The Thermal Stability and Nitrogen Distribution in Epitaxial (110) FeTiN Films

Yunfei Ding and Chester Alexander, Jr.

Department of Physics and Astronomy and Center for Materials for Information Technology,
University of Alabama

Spring Review, 2002

This project was partial supported by the University of Alabama MINT Center and NSIC-EHDR grant # 542417-55130, and made use of NSF MRSEC Shared facilities Grant #DMR-98-09423
Objectives

- Investigate the distribution of interstitial nitrogen atoms inside epitaxial bcc α-FeTi lattices

- Study the origin of the anisotropy of FeTiN thin films

- Study the role of nitrogen in the thermal stability of the anisotropy of polycrystalline FeTiN thin films
Background

- Origin of the anisotropy:
 free energy induced by interstitial nitrogen in bcc α-Fe lattice\[^1\]:

\[
F' = D(\alpha_1^2 C_x + \alpha_2^2 C_y + \alpha_3^2 C_z) + \frac{RT}{2VC_0}(C_x^2 + C_y^2 + C_z^2)
\]

- Mobility of nitrogen atoms cause instability \[^2\]

- Study the thermal stability of nitrogen atoms: WHERE are the nitrogen atoms?

\[^1\] G. De Vries, Physica 25, 1211 (1959)
Experimental

Deposition:
Sputtering deposition on KEY system
H-Si(100)/Cu(100) 2000Å/FeTiN(110) 1000Å
The FeTiN was sputtered at 35W, 0.45mT, 1.2 Å/S[1]

Lattice fit:

Cu<110> 5.112 Å//
Si(100) 5.431 Å
Fe<111> 4.965 Å//
Cu<110> 5.112 Å

Lattice Structure

Four-fold lattice structure

X-Ray ϕ angle scan of FeTi(200) with $2\theta=64.5^\circ$ and $\psi=45^\circ$. The angle ϕ is relative to Cu[100] direction.
Lattice Distortion

Calculation of lattice constant a (x-axis) by

$$a = \frac{C_x (1.01) - 2(C_y + C_z)0.12}{C_{FT}} + a_0$$

Where C_x, C_y, C_z are N concentrations and C_{FT} is the amount of Fe and Ti

Fit is good below 4% N

The $d(200)/d(020)$ spacings measured at $\psi = 45^0$ and $d(002)$ values measured at $\psi = 88^0$.
Lattice Distortion

Calculation of lattice constant \(d(110) \) by assuming

\[
a(b) = \frac{C_x (1.01) - 2(C_y + C_z)0.12}{C_{FT}} + a_0 (b_0)
\]

Then

\[
d(110) = \sqrt{a^2 - (\sqrt{2}c / 2)^2}
\]

\[
\Delta d(110)/d(101) \sim \frac{1}{2} \Delta d(110)
\]

Fit is reasonable below 4% N.

The \(d(110) \) spacings measured at \(\psi=0^\circ \), and \(d(110)/(d101) \) values measured at \(\psi= 60^\circ \).
FMR Measurement

K band FMR $f_0=25.67\text{GHz}$

In-plane measurement geometry

Resonance field vs. direction of DC field relative to Cu[100] direction (θ)
The calculation of crystalline anisotropy constant K_1

$$F = K_1(\alpha_1^2 \alpha_2^2 + \alpha_2^2 \alpha_3^2 + \alpha_3^2 \alpha_1^2)$$

Inside (110) plane:

$$F = K_1\left(\sin^4 \theta + \sin^2 \theta \cos^2 \theta\right)$$

Consider four lattice orientations:

$$K_1 = Ms \cdot \left[\hat{H}(\theta' = 45^\circ) - \hat{H}(\theta' = 0^\circ)\right]/2.34$$

Figure: Anisotropy constant K_1 vs. nitrogen concentration
Conclusions

• In epitaxial FeTiN (110) films, at low nitrogen concentration (<~4at%), nitrogen atoms tend to occupy the sites between (110) planes (x,y sites), this trend seems to be growth related.

• At higher nitrogen concentration (>~4at%), the sites inside (110) planes (z sites) are preferred.

• In-plane magnetocrystalline anisotropy tends to decrease when z sites are preferentially occupied.

• Direct coupling between magnetization and an occupied site was observable due to the four-fold lattice structure, so single crystal films will be deposited in further studies. (manuscript in press, J. Appl. Phys. 2002)