Soft Underlayers for Perpendicular Media

H. S. Jung and W. D. Doyle

MINT Center
The University of Alabama

This project was funded by NSIC-NSF 542417-55139 and by NSIC.

Spring Review, April 2002
Ferromagnetic/IrMn Exchange-coupled Multilayers

Target: 200 nm thick ferromagnetic layer with a permeability of \(\sim 100 \)

- **FeTaN/IrMn**
 - G/FeTaN(20)/[IrMn(10)/FeTaN(20)]\(_9 \)
 - 19 layers
 - High \(4\pi M_s \) \(\sim 20 \) kG
 - Thermal instability

- Increased \(H_k \) to reduce the number of layers and increased thermal stability

- **Co\(_{90}\)Fe\(_{10}\)/IrMn**
 - G/Cu/IrMn/[CoFe(50)/IrMn(10)]\(_4 \)/CoFeN(20)
 - 11 layers
 - Low \(4\pi M_s \) \(15 \sim 16 \) kG

- Increased \(4\pi M_s \)

- **Co\(_{35}\)Fe\(_{65}\)/IrMn**
 - G/Cu/IrMn/[CoFe(50)/IrMn(10)]\(_4 \)/CoFe(25)
 - 11 layers
 - High \(4\pi M_s \) \(\sim 23 \) kG
Effect of Cu Underlayer on H_c

$G/Cu(t \text{ nm})/Co_{35}Fe_{65}(50 \text{ nm})$

- H_c (Oe)
- t_{Cu} (nm)
- EA
- HA
Comparison of Hard and Soft Co$_{35}$Fe$_{65}$ Films

G/CoFe (50 nm)

\[4\pi M_s = 22.2 \text{ kG} \]

\[H_{c\text{,EA}} = 120 \text{ Oe} \]
\[H_{c\text{,HA}} = 117 \text{ Oe} \]

G/Cu(2.5 nm)/CoFe (50 nm)

\[4\pi M_s = 23.2 \text{ kG} \]

\[H_k = 28 \text{ Oe} \]
\[H_{c\text{,EA}} = 8.6 \text{ Oe} \]
\[H_{c\text{,HA}} = 2.3 \text{ Oe} \]
γ, $4\pi M_s$, and H_k from FMR (C. Alexander)

G/Cu(2.5 nm)/Co$_{35}$Fe$_{65}$(50 nm)

Fit to $\gamma = 2.93$ MHz/Oe, $4\pi M_s = 23.2$ kG, $H_k = 27$ Oe

\[H = -H_K + \frac{3}{2} H_K \sin^2 \phi - 2\pi M_s + \frac{1}{2} \left[H_K^2 \sin^4 \phi + 8\pi M_s H_K \sin^2 \phi + 16\pi^2 M_s^2 + 4 \frac{f^2}{\gamma^2} \right]^{1/2} \]
Comparison of J in the Top and Bottom Interfaces

Thickness: Cu 20 nm, IrMn 10 nm, and Co$_{35}$Fe$_{65}$ 50 nm

Bottom Interface

G/Cu/IrMn/CoFe

- $H_p = 57.0$ Oe
- $H_{eb} = 21.0$ Oe
- $H_{c,EA} = 28.1$ Oe
- $H_{c,HA} = 1.6$ Oe

m (memu/cm2) vs. H (Oe)

- $J_{bottom} = 0.19$ erg/cm2

Top Interface

G/Cu/CoFe/IrMn

- $H_p = 58.0$ Oe
- $H_{eb} = 24.8$ Oe
- $H_{c,EA} = 20.5$ Oe
- $H_{c,HA} = 1.1$ Oe

m (memu/cm2) vs. H (Oe)

- $J_{top} = 0.23$ erg/cm2

Bottom and Top

G/Cu/IrMn/CoFe/IrMn

- $H_p = 87.0$ Oe
- $H_{eb} = 50.0$ Oe
- $H_{c,EA} = 29.4$ Oe
- $H_{c,HA} = 2.1$ Oe

m (memu/cm2) vs. H (Oe)

- $J_{bottom \& top} = 0.46$ erg/cm2
Comparison of Optimized Structure of CoFe Multilayer Films

Co$_{90}$Fe$_{10}$ G/Cu(20)/IrMn(10)/[CoFe(50)/IrMn(10)]$_4$/CoFeN(20)
Co$_{35}$Fe$_{65}$ G/Cu(20)/IrMn(10)/[CoFe(50)/IrMn(10)]$_4$/CoFe(25)

Co$_{90}$Fe$_{10}$

- $4\pi M_s = 15$ kG
- $H_p = 89$ Oe
- $H_{eb} = 48$ Oe
- $H_{c,EA} = 23$ Oe
- $H_{c,HA} = 1.4$ Oe

Co$_{35}$Fe$_{65}$

- $4\pi M_s = 23$ kG
- $H_p = 111$ Oe
- $H_{eb} = 51$ Oe
- $H_{c,EA} = 22$ Oe
- $H_{c,HA} = 1.7$ Oe
Longitudinal Annealing

G/Cu(20 nm)/IrMn(10 nm)/Co$_{35}$Fe$_{65}$(200 nm)/IrMn(10 nm)/Cu(10 nm)

Annealed for 10 min. in $H = 500$ Oe

$T_{\text{Annealed}} = 220 \, ^\circ\text{C}$

As-deposited

- $H_p = 48$ Oe
- $H_{eb} = 12.5$ Oe
- $H_{c,EA} = 28.6$ Oe
- $H_{c,HA} = 2.1$ Oe

Annealed

- $H_p = 40$ Oe
- $H_{eb} = 12.6$ Oe
- $H_{c,EA} = 9.4$ Oe
- $H_{c,HA} = 1.2$ Oe
Conclusion

- Soft anisotropic Co$_{35}$Fe$_{65}$ films with $4\pi M_s \sim 23$ kG were successfully produced using a thin Cu underlayer.

- Co$_{35}$Fe$_{65}$/IrMn multilayers showed significant advantages as soft underlayers compared to FeTaN/IrMn and Co$_{90}$Fe$_{10}$/IrMn multilayers.
 - Optimized structure
 G/Cu(20)/IrMn(10)/[CoFe(50)/IrMn(10)]$_4$/CoFe(25)
 - Reduced the number of layers from 19 to 11 to achieve a permeability of ~ 100.
 - Increased $4\pi M_s$ from 20 kG to ~ 23 kG.
 - Improved thermal stability.
 - Kept single domain remanent direction.
Future Work

- Preparation of radially oriented Co$_{35}$Fe$_{65}$/IrMn multilayers.
- Effect of annealing on thermal stability.
- Development of a model to understand the differences between hard and soft Co$_{35}$Fe$_{65}$ films.