Simulation of self-assembly of superparamagnetic particles

P. B. Visscher and Xiaoguang Deng

Department of Physics and Astronomy
The University of Alabama

Supported by DOE grant No. DE-FG02-98ER45714 and NSF-MRSEC DMR-9809423
Outline

• Motivation: high density magnetic storage using nm FePt particles
 • Effects of superparamagnetism on self-assembly kinetics: chaining, chain stacking

• Problem: disparity of time scales (magnetization fast, motion slow)

• A solution: time coarse-graining
 • In slowly varying field, treat precession exactly
 • Arrhenius law for reversals comes out without *ad hoc* assumptions
 • Allows simulating long enough to see self-assembly
Motivation

• Various structures: hexagonal monolayers, multilayers, square arrays.

• What is the role of superparamagnetic fluctuations in self-assembly?

• Need to simulate over very long time scales compared to magnetic dynamics

FeCoPt particle arrays on TEM grids, courtesy M. Chen
Physics needed for self-assembly simulation of superparamagnetic particles

• Magnetization dynamics
 • Landau-Lifshitz equation for dM/dt
 • $H = $ magnetostatic + external + thermal noise

• Particle motion
 • Magnetic torque $\mathbf{M} \times \mathbf{H}$, force $q\mathbf{H}$ (2 monopoles q)
 • Steric force: hard core
 • Hydrodynamic force
 • Random Langevin force
Problems of disparate time scales

Short time scale: magnetic precession time (ns)

Long time scale: particle motion, self-assembly (s)

Solution of precession-time problem: we need to allow \(\Delta t \gg \text{precession period} \) \((\gamma H \Delta t \gg 1) \).

That requires us to “average out precession”.
Averaging out precession

1. Arrhenius-Neél approach?
 - Assumes \(\mathbf{M} \) lies at minimum of Stoner-Wohlfarth energy
 - \(\mathbf{M} \) jumps between minima with probability \(\omega \exp(-\Delta E/k_B T) \)
 where \(\Delta E(\mathbf{H}, \mathbf{M}) \) is the energy barrier and \(\omega \) is an “attempt frequency”.
 - Theoretical problems: what is \(\omega \)? For isotropic particles, what are minima?
 - Practical problem: such a jump sends a discontinuous shock through the system that is difficult to deal with numerically.
Averaging out precession

Evolve the system exactly over interval Δt.

Effectively averages out fast precession, but still treats slow precession correctly. Use this.
Time coarse-graining

Starts from the Landau-Lifshitz equation:

\[
\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H} - \frac{\gamma\alpha}{M_s} \mathbf{M} \times (\mathbf{M} \times \mathbf{H})
\]

Ignores rapidly varying parts of the local field \(H \) (but correctly describes rapid precession of \(M \)).

Uses Kikuchi’s exact solution (for constant \(H \)) to the LL equation:

\[
\alpha \gamma H t = \frac{1 - \cos \theta(t)}{1 + \cos \theta(t)} \quad \mathbf{M}_z = M_s \cos \theta(t)
\]

\[
\alpha \gamma H t = \frac{\mathbf{M}_x - i\mathbf{M}_y = M_s \sin \theta(t) e^{i\gamma H t}}{1 + \cos \theta(t)}
\]

From \(\mathbf{M}, \theta \) at time \(t \), it is easy to calculate them at \(t + \Delta t \) even if \(\gamma H \Delta t \) is large.

What is being left out: resonant energy transfer (small). \(\alpha = 0.1 \)
Magnetization averaging

The effects on the other particles are determined by the average magnetic moment

\[\overline{M_x} - i\overline{M_y} = M_s \int_{t}^{t+\Delta t} \sin \theta(t) e^{i\gamma H t} \]

which cannot be analytically integrated, but there is a simple closed-form parameterization that can (error < 1%):
Large-\(\Delta t\) simulation

Advantages of this time coarse-graining scheme:

- exact at small \(\Delta t\)
 \((\gamma H \Delta t = 0.0314\) movie\)
- exact at large \(\Delta t\)
 \((\gamma H \Delta t = 31.4\) movie\)

Damping \(\alpha = 0.1\)

(click on a sphere for movie, or see http://bama.ua.edu/~visscher/colloids)

THE UNIVERSITY OF ALABAMA • & well-behaved in between
Particle Interactions

M’s precess around each other, eventually becoming parallel (lowest energy configuration, attractive interaction)

$\alpha = 0.001$ movie

$\alpha = 1.0$ movie
Finite temperature: add Langevin noise to LL equation

Start from the minimum-energy configuration (parallel M’s).

Movie shows energy building up until it’s taken away by α as fast as it’s created by thermal noise.
Self-assembly!

Put 50 particles in a box, with one (Lennard-Jones) attractive wall. Movie begins with random particle positions.
Self-assembly!

Final frame of movie: nearly perfect hexagonal lattice (top view).

For this case (strongly superparamagnetic, large a hence short dephasing time) the magnetic interactions tend to average out – get hexagonal lattice.
Summary

• We have developed an algorithm for following superparamagnetic dynamics over the long time scales of self-assembly, without following the precession in detail.

• This is done by using an exact constant-field solution to evolve the system over a time step that can be long compared to the precession period.

• The resulting scheme can successfully model the self-assembly of superparamagnetic particles.