Synthesis, Activation and Electrochemical Study of PtRu Alloy Nanoparticles with Controlled Sizes and Compositions

Z. Liu¹, M. Shamsuzzoha², E.T. Ada², G. B. Thompson³ and D. E. Nikles¹,³

¹ Chemistry Department, University of Alabama
² Central Analytical Facility, University of Alabama
³ MINT Center, University of Alabama

This project was funded by DOE-EPSCoR(DE-FG02-01ER45867) and shared facilities with MRSEC (DMR 02-13985)

Background

- PtRu nanoparticles are highly active CO-tolerant anode catalysts for direct methanol fuel cells (DMFCs).
- The catalytic activity of particles is strongly dependent on the particle size, composition, size-distribution and dispersion.
- Capping agents-based colloidal synthetic approaches can provide good control over the particle size, shape, dispersion and size distribution.
- To catalytically activate the nanoparticles, low-temperature or non-thermal treatments need to be developed.

Synthetic procedures for PtRu nanoparticles

Pt(acac)₂ (80 mg) + Ru(acac)₃ (82 mg) + Diphenyl ether (20 ml)
↓
Heat to 110 °C (N₂ atmosphere)
↓
Inject oleylamine (1.36 ml)
↓
Inject 4 ml 1.0 M super hydride
↓
Reflux for 1 hr
↓
Stop heating an cool down to 30 °C
↓
Wash with ethanol and disperse in Hexane
↓
Isolate particles by centrifugation

As-prepared FCC PtRu NPs with controlled sizes and compositions

As-prepared FCC PtRu NPs with controlled sizes and compositions

Transfer PtRu NPs from organic solvents to aqueous solutions

Carbon-supported PtRu nanocatalysts

Carbon-supported PtRu nanocatalysts

Size- and composition-dependent catalytic activity of PtRu particles for methanol and CO oxidation

Size- and composition-dependent catalytic activity of PtRu particles for methanol and CO oxidation

Summary

- PtRu nanoparticles with controlled sizes and compositions were prepared by capping agent-based colloidal approach.
- PtRu nanoparticles can be catalytically activated without causing the sintering and oxidation of particles.
- The activated PtRu nanoparticles exhibit high catalytic activity for methanol and CO oxidation. Size- and composition study indicates the 3.5 nm Pt₅₀Ru₅₀ particles have the best activity.

For more information contact: E-mail: liu001@bama.ua.edu

The University of Alabama