The Spin- and Angle-Resolved Photoelectron Spectrometer

J.S. Burgess, P. Patterson, J.G. Tobin, G.D. Waddill and G.J. Mankey

MINT Center and Department of Physics and Astronomy
The University of Alabama

This project was funded by grants from US-DOE & NSF-DMR 0213985.

Abstract

We are commissioning a spin- and angle-resolved x-ray photoelectron spectrometer (ASR-XPS) for the study of magnetic materials. The ARS-XPS when coupled with a synchrotron source is capable of determining the quantum numbers of a field electronic state of a sample. For a solid sample, it can determine the E versus k of the valence band as well as the character (s, p, d, f...) and spin state (m_l and m_s). The instrument will be assembled and tested at UA and moved to a synchrotron source.

The Spin- and Angle-Resolved Photoelectron Spectrometer

Quantum Number	How Obtained
\(n \) | XPS
\(l \) | XPS
\(m_l \) | Angle Resolved
\(m_s \) | Spin Resolved

Schematic of Spin-and Angle-Resolved XPS

Spin Orbit and Exchange

- Magnetic X-Ray Circular Dichroism
- 2 ML of FeCo on Cu(001)
- This shows the Fe and Co moments are aligned.
- The spin and orbital contributions to the magnetic moment can be extracted from the measurement.

- Magnetic X-Ray Linear Dichroism
- 2 ML of FeCo on Cu(001)
- Performed in remanence with opposite magnetic fields
- The difference between the scans shows spin states
- Performing this measurement with spin resolution allows one to extract the spin and orbital contributions to the net magnetic moment.
- The effect of the local environment on the spin state may be detected with this measurement.

X-Ray Magnetic Dichroism

- Magnetic X-Ray Circular Dichroism
- 2 ML of FeCo on Cu(001)
- This shows the Fe and Co moments are aligned.
- The spin and orbital contributions to the magnetic moment can be extracted from the measurement.

- Magnetic X-Ray Linear Dichroism
- 2 ML of FeCo on Cu(001)
- Performed in remanence with opposite magnetic fields
- The difference between the scans shows spin states
- Performing this measurement with spin resolution allows one to extract the spin and orbital contributions to the net magnetic moment.
- The effect of the local environment on the spin state may be detected with this measurement.

Conclusion

This instrument will be use to study ferromagnetic and antiferromagnetic materials. Combining polarized x-rays with spin analysis enables the determination of the net magnetic moments in antiferromagnetic materials.

For more information and reprints contact: G. J. Mankey, MINT Center.
E-mail: gmankey@mint.ua.edu

The University of Alabama

Center for Materials for Information Technology
an NSF Materials Research Science and Engineering Center