Effect of Anisotropy Symmetry Property on the Switching Behavior of the Pinned Layer in Exchange Biased Bilayers

Congxiao Liua, Hideo Fujiwarab, Min Suna

aMINT Center and Department of Mathematics
bMINT Center and Department of Physics and Astronomy

The University of Alabama

This project was funded by grants NSF-DMS-0207137 & NSF-DMR-0213985

Motivation

• In exchange biased bilayers, switching chirality occurs due to off-alignment of pinned direction and F layer easy axis.
• Motivation of this work is to understand relationship between switching chirality and anisotropy asymmetry.

Switch Initiating Field of A Single Domain Particle

• Free energy density:
\[F(\alpha, \beta) = E(\alpha, \beta) - \mathbf{H} \cdot \mathbf{M} \]
\[E(\alpha, \beta); \text{anisotropy energy density} \]
\[\alpha; \text{polar angle of magnetization} \]
\[\beta; \text{azimuthal angle of magnetization} \]

• Suppose magnetization initially points to +\(x \) direction, an easy direction of magnetization. If field is applied to +\(x \) direction, the condition
\[F_{uu}F_{\beta\beta} - F_{u\beta}^2 = 0 \]
gives switch initiating field \(H_{sw} [1] \);
\[H_{sw} = \min \{ E_{uu}(\pi/2,0), E_{\beta\beta}(\pi/2,0) \} / M_s \]
\[F_{uu} = \frac{\partial^2 F}{\partial \alpha^2}, F_{\beta\beta} = \frac{\partial^2 F}{\partial \beta^2}, F_{u\beta} = \frac{\partial^2 F}{\partial \alpha \partial \beta}, F_{uu} = \frac{\partial^2 E}{\partial \alpha^2} \]

Switching Chirality

• Given infinitesimal increment of field \(\delta H \) at \(H_{sw} \), if location of energy minimum shifts by infinitesimal amount \((\delta \alpha, \delta \beta) \), then
\[F_u(\pi/2 + \delta \alpha, \delta \beta) = 0 \]
\[F_\beta(\pi/2 + \delta \alpha, \delta \beta) = 0 \]
\[\Rightarrow \]
\[\frac{1}{2} [E_{uu}(\pi/2,0)(\delta \alpha)^2 + 2E_{u\beta}(\pi/2,0)(\delta \alpha)(\delta \beta) + E_{\beta\beta}(\pi/2,0)(\delta \beta)^2] \]
\[- M_s(\delta H)(\delta \alpha) + \eta_1, \eta_2 \in [0,1] \]
\[\Rightarrow \]
\[\nabla E_{uu} = 0, \text{min} = 0 \]

Anisotropy Asymmetry in Exchange Biased Bilayers

\[\nabla E_{uu} = 0 \]
\[\text{K}_{uu}; \text{unidirectional anisotropy constant} \]
\[\text{K}_{\alpha\beta}; \text{uniaxial anisotropy constant} \]
\[E(\alpha) = -K_{uu} \cos(\alpha - \delta_1) + \text{K}_{\alpha\beta} \sin^2(\alpha - \delta_2) \]
\[E(\alpha) = 3K_{\alpha\beta} \sin(2\delta_2) \]
\[\Rightarrow \text{Off-alignment of e.d. and e.a. causes switching chirality} \]

Energy Profile

\[H < H_{sw} \]
\[\text{energy minimum at } \alpha = 0 \]
\[H = H_{sw} - \delta H \]
\[\text{energy minimum at } \alpha = 0 \]
\[H = H_{sw} \]
\[\alpha = 0 \text{ becomes metastable} \]
\[H = H_{sw} + \delta H \]
\[\text{energy minimum shifts to the right} \]

Conclusion

• Switching behavior of a single domain particle with arbitrary anisotropy is studied. Criterion for determining switching chirality is obtained.
• Difference between switch initiating field \(H_{sw} \) and actual switching field in exchange biased bilayers is caused by off-alignment of pinned direction and F layer easy axis.

For more information and reprints contact:
Congxiao Liu, MINT Center.
E-mail: liu009@bama.ua.edu