Domain Wall Switched Media: Overcoming the Superparamagnetic Limit

D. Suess, I. Kalcher, J. Fidler, T. Schrefl
Vienna University of Technology, Austria

H. S. Jung, S. Velu,, M. T. Velu, S. S. Malhotra, G. Bertero
Komag

Mint Workshop October, 25th 2006
Outline

Introduction
Magnetic recording

Bilayers
Switching Times
Influence of J_s

Multilayers
Basic Concept

Graded Media
Optimal variation of K_1
Granular Exchange Coupling
Basic Concept
Basic Concept

Composite Media (ECC) [1]

- weak coupling
- J_s homogenous within hard and soft layer

Exchange Spring Media [2]

- strong coupling
- formation of domain wall

Composite Media/Exchange Spring

$K_{\text{hard}} = 0.5 \times 10^6 \text{J/m}^3$

$K_{\text{soft}} = 0$

to vary interface coupling

10 nm
Domain wall width

δ_s decreases with larger external fields
Required Soft Layer Thickness

• Domain wall width \([1,2,3]\):

\[
\delta_s = \pi \sqrt{\frac{A}{K_{\text{eff}}}}
\]

\[
K_{\text{eff}} = J_s H_{\text{ext}} + K_s
\]

• Maximum external field if \(H_{\text{ext}} = \) pinning field

\[
H_{\text{ext}} = \frac{1}{4} \times \frac{2(K_H - K_S)}{J_s}
\]

• Minimum pinning field if:

\[
K_S = \frac{1}{5} K_H
\]

Influence of anisotropy of hard layer on H_c

Limit $K_s=0$
Required soft layer thickness is:

$$\delta_s \approx \pi \sqrt{2A_{soft} / K_H}$$

- $K_{hard} = 4.0 \times 10^6 \text{J/m}^3$
- $K_{hard} = 1.0 \times 10^6 \text{J/m}^3$
- $K_{hard} = 0.25 \times 10^6 \text{J/m}^3$
Influence of different J_s in hard/soft layer.

Demagnetizing fields are different in both layer.

- $J_s = 2\, \text{T}$
- $J_s = 0\, \text{T}$

H_d

$-0.18 \rightarrow 1.8$
Influence of different J_s in hard/soft layer

Magnetization J_s is varied in hard and soft layer

$$J_{\text{aver}} = \frac{J_s + J_H}{2} = 0.5T$$

$$H_c = \frac{2K_H - 2K_S}{\left(\sqrt{J_s} + \sqrt{J_H}\right)^2}$$

Saturation field has a minimum if $J_s = J_H$
Different J_s on energy barrier

\[J_{\text{aver}} = \frac{J_s + J_H}{2} = 0.5T \]

\[J_H \approx J_S \]
Switching Times

Single Phase Media:

Exchange Spring Media:

Exchange Spring Media

\[H_c = \frac{2K_{\text{hard}}}{J_{\text{hard}}} \frac{1 - \varepsilon_K \varepsilon_A}{(1 + \sqrt{\varepsilon_J \varepsilon_A})^2} \]

\[\varepsilon_K = \frac{K_s}{K_H} \quad \varepsilon_A = \frac{A_s}{A_H} \quad \varepsilon_J = \frac{J_s}{J_H} \]

\[J_s = J_H \]
\[A_s = A_H \]

\[H_c = \frac{1}{4} \times \frac{2(K_{\text{hard}} - K_{\text{soft}})}{J_{\text{hard}}} \]

For specific cases:

- \(K_s = 0 \):
 \[H_c = \frac{1}{4} \times \frac{2K_{\text{hard}}}{J_{\text{hard}}} \]

- \(K_s = \frac{K_H}{5} \):
 \[H_c = \frac{1}{5} \times \frac{2K_{\text{hard}}}{J_{\text{hard}}} \]

$K_1 = K_H$

$K_2 = K_H / 2$

$K_3 = 0$

$$H_c = \frac{1}{4} \times \frac{2(K_2 - K_3)}{J_{\text{hard}}} = \frac{1}{8} \times \frac{2K_H}{J_{\text{hard}}}$$
Trilayer

\[K_1 = K_H \]

\[K_2 = \frac{K_H}{2} \]

\[K_3 = 0 \]

\[H_c = \frac{1}{4} \times \frac{2(K_1 - K_2)}{J_{hard}} \]

\[= \frac{1}{8} \times \frac{2K_H}{J_{hard}} \]
\[H_c = \frac{1}{4} \times \frac{2(K_2 - K_3)}{J_{\text{hard}}} \]

\[= \frac{1}{4(N-1)} \times \frac{2K_H}{J_{\text{hard}}} \]

<table>
<thead>
<tr>
<th>structure</th>
<th>reduction (H_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>1</td>
</tr>
<tr>
<td>bilayer</td>
<td>1/4</td>
</tr>
<tr>
<td>trilayer</td>
<td>1/8</td>
</tr>
<tr>
<td>4 layers</td>
<td>1/12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N layers</td>
<td>(\frac{1}{4(N-1)})</td>
</tr>
</tbody>
</table>

\[K_m = mK_H / (N-1) \]

\[K_{m+1} = (m+1)K_H / (N-1) \]
Hysteresis of different Media

\[K_1 = 2 \times 10^6 \text{ J/m}^3 \]
\[K_1 = 1.11 \times 10^6 \text{ J/m}^3 \]
\[K_1 = 2.2 \times 10^5 \text{ J/m}^3 \]

25 nm
Energy Barrier Comparison

Trilayer has same energy barrier as single layer of same thickness
Graded Media

- What is the optimal dependence of $K_1(z)$?
- In order to keep DE constant we assume a thick graded anistropy layer (g-layer) thickness is varied.

layer with constant K_1 (20 nm)
What is the optimal shape to move a ball up a ramp with minimum force?

- force is small
- force is the same everywhere
- at some points large force required
Magnetic Problem

• Pinning field should be the same everywhere!

\[H_{pinning} = \frac{1}{2J_s} \frac{\partial E(x)}{\partial x} \]

\[E(x) = 4\sqrt{A \cdot K(x)} \]

• Pinning field is constant if

\[E(x) = \beta x \quad \rightarrow \quad K(x) = \alpha x^2 \]

\[K(x) = \left(\frac{K_{hard}}{t_G^2} \right) x^2 \]

\[H_{pinning} = \frac{2}{t_G J_s} \sqrt{AK_{hard}} = \frac{E}{F t_G J_s 2} \]

D. Suess, APL 89, 113105 (2006)
Comparision with simulation

- g-layer discretized in 50 layer
- $K(x)$ proportional x^2

For thick g-layers very good agreement with analytic data.
\[\Delta E_B = 4r^2 \pi L K \]
\[\Delta E_B = 4r^2 \pi \sqrt{AK} \]

\[l_{\text{max}} = 4\sqrt{A/K} \]
\[\Delta E_{\text{max}} = 4r^2 \pi \sqrt{AK} \]

Energy barrier

extent transition is one task of ESM
Comparissson with Single Phase Media

Keeping coercive field constant: \(\mu_0 H_c = 1.7T \)
\[d = 2r = 4\text{nm} \]

Graded Media:
\[\Delta E_B = 2r^2 \pi J_s t_g H_c \]
\[K(x) = \alpha x^2 \]
\[\text{gain} \to \infty \]

Single Phase Media:
\[\Delta E_B = 4r^2 \pi \sqrt{AK} \]
\[K = 0.33\text{MJ/m}^3 \]
Comparisson with Single Phase Media

Keeping energy barrier constant:

\[\Delta E = 54k_B T_{300} \]

\[d = 2r = 4\text{nm} \]

analytic formula not valid

Single Phase Media:

Graded Media:

\(K = 2 \text{ MJ/m}^3 \)

\(K > > 2 \text{ MJ/m}^3 \)

coherent \(t_g \) (nm) incoherent
Global Optimization Algorithm

Film thickness 25 nm

\[
\mu_0 H_{\text{ext}} = 1.5 T
\]

- quadratic dependence very close to optimal structure
Magnetization Dynamics

Reversal as function of the field rise time
\(\alpha = 0.02 \)
Optimal Intergrain Exchange

$H_{ex, mean} = 0.3T$

1.5% of full exchange
Strong Lateral Coupling

Spins aligned almost parallel

Reduction of energy barrier due to exchange

\[A_{\text{int}} = 12 \times 10^{-14} \text{ J/m} \]

Energy barrier vs. coordinate along MEP (a.u.)
• The particle needs the **same thermal activation** to overcome the energy well
• **The force** to push the particle from one minimum to the other depends on the slope of the energy landscape
• The microstructure allows to change the energy landscape
Summary

Optimal bilayer structure consists of a hard layer and a super hard layer.

With graded media in principle every hard magnetic material can be written with a limited external field (e.g. H=1.5 T).

The gain in energy barrier of an exchange spring media compared to a single phase media for the same magnetization, film thickness and coercive field increases unbounded with the film thickness.

The optimal (lateral) exchange field should be about 0.3T.
Sharrock’s Law

• How to measure the energy barrier ???

• For single phase media using Sharrocks law

\[H_c = H_0 \left(1 - \left(\frac{k_B T}{\Delta E_0} \ln\left(-\frac{\tau}{\ln(1/2)\tau_0} \right) \right)^{1/n} \right) \]

• Assumption the energy barrier can be described by

\[\Delta E(H) = \Delta E \left(1 - \frac{H}{H_c(\theta)} \right)^n \]
Sharrock’s Law

\[
\Delta E(H) = \Delta E \left(1 - \frac{H}{H_c(\theta)}\right)^n
\]

- fit n locally

\[
\theta = \text{soft layer thickness}
\]

\[
\Delta = \Delta - \text{single phase}
\]

Sharrock's Law

- fit n locally

\[
\Delta E(H) = \Delta E \left(1 - \frac{H}{H_c(\theta)}\right)^n
\]

- fit n locally

\[
\theta = \text{soft layer thickness}
\]
Local fit of n

- $t_{\text{hard}} = 18 \text{ nm}$
- Field 0.5° off the easy axis

For single phase media see:

\[\Delta E(H) = \Delta E \left(1 - \frac{H}{H_c(\theta)} \right)^n \]
Extrapolation

• 36 nm thick soft layer (infinite thick soft layer) = worst case

Error 40% !!!!
Varied soft layer thickness from 0 nm to 36 nm

\(n = 1.5 \)

hard layer thickness 18 nm

<table>
<thead>
<tr>
<th>soft layer thickness</th>
<th>Error in Energy Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_s = 0)</td>
<td>Underestimation of 18 %</td>
</tr>
<tr>
<td>(t_s = 7)</td>
<td>Overestimation of 8 %</td>
</tr>
<tr>
<td>(t_s = 36)</td>
<td>Underestimation of 40%</td>
</tr>
</tbody>
</table>

Standard deviation +/- 10%

- Fit cannot be improved by using \(n \) as an additional fit parameter
Extrapolation - Field Applied at 45°

H_{ext} at 0.5°

H_{ext} at 45°

\(n \text{ almost constant} \)
Extrapolation - Comparison

- n can be determined from fit
- Excellent fits can be obtained for the whole field range

\[\Delta E(H) = \Delta E \left(1 - \frac{H}{H_c(\theta)} \right)^n \]

Standard deviation of error of barrier

<table>
<thead>
<tr>
<th>H_{ext} at 0.5°</th>
<th>H_{ext} at 45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Theoretical Limits: New point of view of writeability problem

In principle every hard magnetic material can be written with a limited external field (e.g. $H=1.5$ T)

H_c not proportional to ΔE_0

finite thickness: trilayer (hard layer=FePt) with total thickness 25 nm

decreases H_c by factor of 7

no reduction of energy barrier

Experimental measurement of energy barriers with Sharrock's law:

more accurate for a field angle of 45°.
Neuronal Network - Optimization

Use the trained network for simulated annealing

New optimal design variables (approximation)

Perform FE Sim. with new set of design variables to calculate ΔE

Train neuronal Network with new set of design variables and ΔE
Summary

Theoretical Limits: New point of view of writeability problem

In principle every hard magnetic material can be written with a limited external field (e.g. H=1.5 T)

finite thickness: trilayer (hard layer=FePt) with total thickness 25 nm

decreases H_c by factor of 8

no reduction of energy barrier