Magnetization relaxation in (CoFe)$_{1-x}$Ge$_x$ alloys

T.Mewes1, Y.-H. A. Wang1, C.K.A. Mewes1, W.H. Butler1
S. Maat2, B. York2, M.J. Carey2, J.R. Childress2
M. Toney3

1 MINT center, University of Alabama, Tuscaloosa, AL 35487, USA
2 Hitachi Global Storage Technologies, 3403 Yerba Buena Road, San Jose, CA 95135.
3 Stanford Synchrotron Radiation Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025.

The short spin-diffusion length and high bulk spin-scattering parameter of (CoFe)$_{1-x}$Ge$_x$ alloys [1] makes them interesting candidates for future high-density recording read-head sensors. Here we report on the magnetization relaxation and structural properties of Ta(5 nm)/Cu(4 nm)/(CoFe)$_{1-x}$Ge$_x$(10, 50 nm)/Ru(7 nm) films in the composition range 0 at. %<=$x<=$ 35 at. %.

For films in the concentration range 10 at.%<=$x<$ 33 at.% annealed at 245°C we find B2 ordering and for concentrations above 39% a hexagonally closed packed (hcp) structure. In the composition range in between we find a bcc+hcp phase mixture. These results correlate with the effective damping parameter measured in these alloys, where we find a broad minimum with $\alpha\approx 0.0025$ for Ge concentrations from 20-30%, with a minimum in the relaxation rate $G=33$ MHz for a Ge concentration of 30 at.%. A strong increase of the damping is measured for the thick GoFeGe films with Ge concentrations above 33 at. %. For 10nm thick films and in full spin-valve structures we find evidence for a significant contribution to the magnetization relaxation caused by two magnon scattering. Temperature dependent FMR measurements (10 K-RT) were carried out for a 50nm thick (CoFe)$_{1-x}$Ge$_x$ film with $x=30\%$, i.e. the film with the lowest relaxation rate at room temperature. Here we observe a shallow minimum in the linewidth around 60-70K First principles calculations carried out for B2 ordered (CoFe)$_{75}$Ge$_{25}$ structures show a pseudogap in the minority channel, consistent with the low magnetic damping [2,3] and the high CPP-GMR signal observed in spin-valves using these alloys in previous studies [1].

We would like to thank S. Chandrashekariai for the sample preparation. This work was supported by NSF DMR 0804243.

References:

\[\text{Fig. 1: Temperature dependent FMR linewidth of a (CoFe)$_{1-x}$Ge$_x$ film with } x=30\% \text{, measured at 10, 20, 30, 40 and 45 GHz.}\]