Training Effect in Ferro (F) / Antiferromagnetic (AF) Exchange Coupled Systems: Dependence on AF Thickness

Kunliang Zhang, Tong Zhao, and Hideo Fujiwara

MINT Center and Department of Physics and Astronomy

The University of Alabama

This project was partly funded by grant from DOD-ARO (DAAH04-96-1-0316) and made use of NSF MRSEC Shared Facilities (52417-55139)

Training Effect

• Observations of training effect
 (1) CoO/Co systems [1], [2]: *Tilting & Creep* [3]
 (2) FeMn/NiFe [4]: Change of interface net moment
 (3) NiO/NiFe systems [5]

• Try to get better understanding.

Characteristic fields vs IrMn thickness

A: NiFe(12nm)/IrMn(t nm)
B: IrMn(t nm)/NiFe(12nm)
Training effect-Type I
Si/Cu/NiFe(12nm)/IrMn(3.2nm)/Cu

(a)
M (a. u.) vs. H (Oe)
- c1
- c2
- c5
- c10

(b)
Characteristic fields (Oe)
- H_{sw}^+
- H_c
- H_{eb}
- $|H_{sw}|$

Training cycle (n)
Training effect-Type II
Si/Cu/NiFe(12nm)/IrMn(4.8nm)/Cu
Training effect ratio ω as a function of t_{AF}

$$\omega = \frac{(H_{sw} - (0) - H_{sw} - (20))}{H_{sw} - (0)}$$

A: NiFe(12nm)/IrMn (t nm)
B: IrMn (t nm)/NiFe(12nm)
Cycle number dependence of H_{sw}^+

A

- $t_{AF} = 3.2$ nm, Type I
- $t_{AF} = 4.0$ nm
- $t_{AF} = 4.8$ nm, Type II

B

- $t_{AF} = 3.2$ nm, Type I
- $t_{AF} = 4.0$ nm, Type I
- $t_{AF} = 5.6$ nm, Type II
- $t_{AF} = 4.8$ nm
- $t_{AF} = 32$ nm, Type II
Simulation of training effect

Both the normalized magnetization (M_{\parallel}/M_s) and net spin moment (S_{\parallel}/S_s) are shown. 1, 2 and 3 indicate the cycle number of the training.

$r_{\text{mean}} = 0.45 \ (J_{F-AF} = 0.25 \ \text{ergs/cm}^2), \ \sigma_r = 0.24,$

normalized standard deviation of $J_{AF-AF}: \ \sigma_{AF-AF} = 0.4.$

(a) $|J_{AF-AF}^{\text{mean}}|/ J_{F-AF}^{\text{mean}} = 0.4$, Type I; (b) $|J_{AF-AF}^{\text{mean}}|/ J_{F-AF}^{\text{mean}} = 0.04$, Type II
Conclusions

• With increasing t_{AF}, the training effect starts to appear with the appearance of the exchange bias field, then it increases drastically to a peak and then decreases quickly, eventually to almost zero.

• With increasing t_{AF}, the type of the training effect changes from Type I to Type II.

• Samples A (AF:top) and B (AF:bottom) show similar dependence on t_{AF}, except that the training effect decays faster for A than for B.

• Similar results are also obtained for other F/AF exchange coupled bilayers (AF: FeO$_x$ and FeMn).
Conclusions (Continued)

• Training effect is understood as the agitation and stabilization process of the net surface moment of those AF grains contributing to H_{eb} and H_c.

• At smaller t_{AF} where the majority of the AF grains are of the class $0.5 < r < 1$, the reduction of H_c is dominant, resulting in Type I training effect, while at larger t_{AF} where the majority of the AF grains are of the class $r < 0.5$, the reduction of H_{eb} is dominant, resulting in Type II training effect. ($r = J/2K_{AF}t_{AF}$)