The Mechanism of Spin-wave Switching

P. B. Visscher, D. M. Apalkov, and X. Feng

Department of Physics and Astronomy
The University of Alabama

Supported by DOE grant No. DE-FG02-98ER45714 and NSF-MRSEC DMR-9809423, and by the Computational Materials Sciences Network sponsored by the Materials Sciences Division of the DOE Office of Science.
Motivation

We want to understand switching in magnetic media (e.g., hard disk).

Basic problem: switch

Known mechanisms of switching:

- Curling
- Buckling
- Nucleation at end
Or, spin-wave switching (Safonov & Bertram 1999):

- Magnetization vs time for a $4 \times 4 \times 4$ system (finite temperature initial condition):

Does not go to -1 because spin wave energy cannot be dissipated (no damping)
Basic equation for precession

\[
\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}
\]

\[
\mathbf{H} = \mathbf{H}_{\text{ext}} + \mathbf{H}_K + \mathbf{H}_{\text{exch}}
\]

- \(\mathbf{H}_{\text{ext}}\) - external magnetic field;
- \(\mathbf{H}_K = \frac{2K}{M_S^2} M_Z \hat{z}\) - effective anisotropy field due to intrinsic crystalline anisotropy or to sample shape
- \(\mathbf{H}_{\text{exch}} = \sum_{\text{nbrs}} J M'\) - effective exchange field;

Landau-Lifshitz equation without:
- damping (not important in early stages of fast switching)
- thermal (Langevin) noise (small, \(k_B T << \text{Zeeman energy}\))
Visualizing spin waves

Fourier-transform to get spin wave amplitudes:

\[M(k) = \frac{1}{N^3} \sum_r M(r)e^{-i k \cdot r} \]

Each \(M(r) \) can be written as the sum of its Fourier components:

\[M(r) = \sum_k M_k(r) \]

where the Fourier component is

\[M_k(r) \equiv \text{Re}(M(k)e^{i k \cdot r}) \]

Rather than display the complex vector \(M(k) \) at each point in \(k \)-space, we display all the individual components \(M_k(r) \) for all cells \(r \) (\(N \) different values, 4 here) – they lie on an ellipse.

In \(k \)-space we show red polygon (approx. to ellipse)
Visualizing One Spin Wave

Two spaces:

- k-space shows spin waves present in the system. In this picture there is one spin wave with $(0,0,k_z)$ wave vector represented in k-space by the red polygon. The red line at point $(0,0,0)$ represents $k=0$ component (average magnetization).

- real-space shows the corresponding positions of magnetization vectors in the system.
Back to switching

We found:

• a uniform system with an almost-downward H_{ext} would get close to the equator, but not switch (the upper picture);

• if we add exchange interactions we have switching. Lower picture is the last frame ($t = 0.3$ ns) of a movie (http://bama.ua.edu/~visscher/mumag/) which shows amplitude of spin waves - ‘k- space’ and magnetization - ‘real space’.

Center for Materials for Information Technology
an NSF Materials Science and Engineering Center

THE UNIVERSITY OF ALABAMA
Growth of spin-wave amplitudes

\[(n_x, n_y, n_z) = \text{wave vector in integer form:}\]

\[k = 2\pi \left(\frac{n_x}{L_x}, \frac{n_y}{L_y}, \frac{n_z}{L_z} \right)\]
Summary

We have identified the instability responsible for spin wave switching. Future plans include:

• Consider samples with boundaries (above results are for periodic b.c.’s)

• Add magnetostatic interactions (Fast Multipole Method)

• Determine which wavelengths are most unstable

• Model subsequent dissipation of spin-wave energy