Coaxial Shear Magnetometry: Measuring Order in Magnetic Suspensions under Shear and Magnetic Fields

Duane T. Johnson, Alan M. Lane, and John M. Wiest
Department of Chemical Engineering and
Center for Materials for Information Technology
University of Alabama
Why Order the Dispersion?

- Acicular magnetic particles can be oriented in the dispersion by applying a magnetic field and/or a shear field.
- Ordered dispersions can result in higher data storage. (Thinner, smoother, ordered coatings)
Theoretical Predictions

- Recent models can predict the extent of ordering in the fluid (given by order parameter S)
- Need to measure order in dispersions

$S = 1$: perfect prolate order

$S = -1/2$: perfect oblate order
Particle Order versus Magnetic Field and Shear Rate

- Increasing the magnetic and shear fields, increases the order
Measuring Order

• How do we measure orientation of nanoscale particles under simultaneous magnetic and shear fields?

• Principle of magnetic susceptometry.
 – An AC magnetic field is applied to the fluid
 – The particles “wiggle” in the field
 – The strength of the “wiggle” indicates the average direction of the particles
AC Susceptometer

- AC solenoid coil
- Fluid sample
- Lock-in Amplifier
- Data Acquisition
- Computer
- DC magnet
- Power Amplifier
- DC magnet controller
- Magnetometer

THE UNIVERSITY OF ALABAMA
AC Susceptibility

- Probes the motion of magnetic particles in a small-amplitude AC field in the presence of a perpendicular DC field.
- Types of Experiments:
 - Measure susceptibility
 - DC field amplitude sweep
 - Transient response to DC field
 - AC frequency sweep
 - AC field amplitude sweep
 - Drying over time
 - Gelling over time

![Graph showing AC susceptibility as a function of frequency]
Ordering due to Shear

- In a constant shear field, the particles will orient in the direction of the shear

![Diagram of ordering due to shear](image.png)
Coaxial Shear Magnetometry

- Measures AC susceptibility of ink as particles orient in the flow direction due to shear or DC field bias.
- Thin string is coated with dispersion.
- Simple geometry amenable to theoretical analysis and simulation. Interpret in terms of order parameter.