Magnetization Reversal in \(\mu \text{m}\)-size antidot Permalloy arrays

Center for Materials for Information Technology *formerly University of Alabama at Tuscaloosa

1P. Vavassori, 2G. Gubbiotti

INFM, Università’ di 1Ferrara, 2Perugia, Italy

2001 MINT Fall Review
November 7, 2001
Polarization modulation is used to separate the components of M during a MOKE measurement.

P. Vavassori; *APL* 77, 1605 (2000)
Antidot Arrays

- Permalloy 40 nm DC-sputtered on the native oxide of a Si substrate
- $H_{\text{ext}} = 100$ Oe during deposition - uniaxial anisotropy
- Patterning by optical lithography
- Square, rectangular, hexagonal, and oblique hole mesh
- Study of the magnetization reversal

AFM images 16×16 µm²
Vector Magnetometry 1

- In-plane magnetization
 - parallel to H_{ext} (solid dots)
 - perpendicular to H_{ext} (open dots)
- Anisotropy dominated by the dot pattern, with hard axes along the directions connecting nearest neighbor holes

Longitudinal hysteresis loop for the continuous Py film: (1) easy, (2) hard
Vector Magnetometry 2

- Anisotropy reflects the symmetry of the hole lattice
Magnetization Reversal Process

• Spike domains form around voids (Cullity) with walls at \(\sim 45^\circ \) to the field, \(M_d \) perpendicular to the field

• Domains elongate with increasing field

• When the field is applied along nearest neighbor holes, spins rotate 90° to connect holes along the field direction. These loops exhibit a hard axis-like shape.
Modulus of Magnetization

- Highly coherent domain nucleation and expansion process
Magnetic Force Microscopy

- MFM images at remanence (16×16 μm²)
- Domain structures periodic and commensurate with the hole array
- Domains joining nearest neighbor holes are in qualitative agreement with the magnetization reversal mechanism hypothesized
Conclusions

• MOKE with polarization modulation has been used to study the magnetization reversal process of Permalloy anti-dot arrays

• Patterning induces:
 – increase of the coercive field
 – generates easy and hard axes with the symmetry of the hole array
 – hard axes are in the direction of the nearest neighbor holes

• Formation of spike domains and rotation of spins defines the hard axes in the direction of nearest neighbor holes