High Moment Alloys

Bill Doyle, Chet Alexander and Gary Mankey
Department of Physics and Astronomy and
Center for Materials for Information Technology

Giovanni Zangari
Department of Materials Science and Engineering
Center for Electrochemical Science and Engineering
University of Virginia
and
Center for Materials for Information Technology

The University of Alabama
Outline

Studies of Sputtered CoFe Films
 Background
 Future Work: Anisotropy; Magnetostriction
Magnetization reversal in Patterned Alloys
 Background
 Future Work: Thermal Relaxation and Damping
Electroplated Alloys
 Background
 Future Work: CoFe and alternative alloys; small poles in AlO₂
Nanostructured Epitaxial Fe Films
 Background
 Future work: Control surface tension, strain and atomic bonding
to produce self-assembled nanostructured films.

The University of Alabama
Effect of Various Underlayers on H_c

G/Underlayer(t nm)/Fe$_{65}$Co$_{35}$(50 nm)

- W/o underlayer
- Ta(2.5 nm)
- Cu(2.5 nm)
- NiFe(2.5 nm)
- Ru(2.5 nm)

The University of Alabama

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Cross-sectional TEM Images of Fe$_{65}$Co$_{35}$ Films

Without underlayer:
Grain size is undefined.

Ta 50 ± 13 nm

Cu 9.6 ± 1.4 nm

NiFe 9.4 ± 1.9 nm

Ru 9.3 ± 0.9 nm

In collaboration with S. Matsunuma, Hitachi Maxell.
The University of Alabama

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Calculated and Measured Ratio of H_c in Fe$_{65}$Co$_{35}$ Films

* Parameters in Fe$_{65}$Co$_{35}$

\[
\begin{align*}
K_1 &= 7.3 \times 10^4 \text{ ergs/cm}^3 \\
K_2 &= 2.5 \times 10^4 \text{ ergs/cm}^3 \\
K_{u,w_0} &= 1.1 \times 10^4 \text{ ergs/cm}^3 \\
K_{u,Ta} &= 0.4 \times 10^4 \text{ ergs/cm}^3 \\
K_{u,Cu} &= 2.7 \times 10^4 \text{ ergs/cm}^3 \\
\lambda_{100} &\approx \lambda_{111} \\
D_{g, w_0} &= 60 \text{ nm} \\
D_{g, Ta} &= 50 \text{ nm} \\
D_{g, Cu} &= 10 \text{ nm}
\end{align*}
\]

\[
\frac{H_c}{H_{c,Cu}} = \frac{K_u^{1/4}}{K_{u,Cu}^{1/4}} \frac{K_{\text{local}}}{K_{\text{local},Cu}} \frac{D_g^{3/2}}{D_{g,Cu}^{3/2}}
\]

The calculated ratio
- = 12.5 for FeCo without an underlayer
- = 6.9 for FeCo with Ta

The measured ratio
- = 14.0 for FeCo without an underlayer
- = 7.8 for FeCo with Ta

($H_{c,w_0} = 120$ Oe, $H_{c,Ta} = 67$ Oe, and $H_{c,Cu} = 8.6$ Oe)

Reduction in Saturation Magnetostriction of FeCo

\[4\pi M_s \quad \leftrightarrow \quad \lambda_s \]

1. Adjusting the composition of FeCo [1]
2. Adding Sm into FeCo [2]
3. Composite structure: FeCo(Sm)/FeTa

The University of Alabama
Cu/CoFe FMR Anisotropy Study

Torque, VSM, FMR techniques

The University of Alabama
MOKE-Waveguide System

- Lockin Amp
- Detector
- Analyzer
- Coils
- Coplanar waveguide
- Polarizer
- Modulator
- Lens
- Computer w/LabView
- Pulse Generator
- Laser
- Sample
- 300 psec rise time
- 1-100 nsec pulse width

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
The University of Alabama
MOKE and MOKE – Switching Studies of NiFe

The University of Alabama

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
FMR of Patterned NiFe

FMR, hard axis
NiFe, Patterned
2 x 20 \(\mu \) x 50 nm

\(4\pi M_s = 9560 \) Oe
\(\gamma = 2.99 \) MHz/Oe

FMR Linewidth data
NiFe, patterned
2 x 20 \(\mu \) x 50 nm

\(\alpha = 0.008, \Delta H_0 = 6 \) Oe

The University of Alabama
Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Identified Compositions with high B_s 21.5 kG, low $H_c \sim 1$ Oe

Growth of BCC + FCC phases induces small grain size, soft magnetic properties
Recent Efforts

Detect first stages of phase transformation by monitoring stress during heat treatment

Study high frequency properties of soft materials as function of their structure (with Chet Alexander)
Fe-Co with Bulk Moment

- Fe-Co with $B_s = 24.5$ kG, low H_c, low λ_s
 - Avoid precipitation and incorporation of Fe(OH)$_3$ in the film
 - Selective complexants to bind Fe$^{3+}$
 - Pulse plating (PP) and pulse reverse plating
 - Decrease internal stresses
 - Use additives to compete with hydrogen adsorption at the surface
 - Optimize t_{off} in PP to desorb hydrogen
 - Composition modulation of FeCo by novel chemistries (could also decrease λ_s)
Fe-Co-X with high moment

- $(\text{Fe}_{50}\text{Co}_{50})_{1-y}\text{X}_y \ (\text{X} = \text{Va, Mo}, \ y \sim 1 \ \text{at}%)$ exhibit high moment and softer magnetic properties than FeCo.

- Previous efforts have given limited soft magnetic properties.

- Utilize novel chemistries, various current/voltage waveforms.

\[
\text{Co}_{49.5}\text{Fe}_{49.5}\text{V}_1 \quad B_s > 20 \ \text{kG}
\]
Remanent States of nm-scale Soft Magnetic Structures

- 1 Tb/in² require heads with 10 - 50 nm pole cross section
- Pole dimensions comparable to l_{exch} and domain wall width
- Magnetic properties and remanence configuration are not understood
- Direct macroscopic - static and dynamic - measurements
Nanostructured Epitaxial Fe Films

We are learning to control the forces of surface tension, strain and atomic bonding to produce self-assembled nanostructured films.

Magnetization data confirms that a small change in process temperature produces markedly different structures.

Ref. Poster by P. Mani, et al.

The University of Alabama