New Organic Media for Information Storage

Department of Chemistry, The University of Alabama

Kye-Young Kim, Jia Sun, Andy Li
Greg Szulczewski*, Silas C. Blackstock*

funding: NSF-MRSEC seed project
Project Goals

- develop a new medium and mechanism for molecular scale information storage
 - demonstrate a redox storage mechanism
 - achieve 100 Tb/in² storage density in molecular thin film medium
 (assumed molecular diameter of 2.5 nm gives 10^{14} molecules/in²)
Molecular Redox State as Information Storage Unit

Advantages:
• electrical control of state-change (write)
• fast state switching
• electrical control of readout
challenges:
• charge states must be chemically stable
• charge states must be spatially stable (image stability)
• need to be able to discharge on demand

\[\Delta G^\circ = 0 \]
need \(\Delta G^* > 40 \text{kT} \approx 1 \text{eV} \)
approach:
build shell/core molecular architecture with radial redox gradient
--- to trap charge

charge injection

![Diagram of molecular architecture with radial redox gradient](image)

higher E°
lower E°

shell/core exchange barrier
$\Delta G^* \geq \Delta E^\circ$ (redox gradient)
trapping the charge with the redox gradient

charge the core
stop site/site charge exchange

E

shells

ΔE°

core

trapping the charge with the redox gradient
redox-gradient (RG) dendrimers as charge carriers

concentric shells of redox-active groups in dendrimer impart radial potential gradient

directed charge transport and charge storage properties

monodisperse, pseudo-spherical oligomer

amorphous films
Can we prepare redox-gradient dendrimers with overlap yet weak electronic coupling between shell and core?

Yes - we use meta-connections at benzene as the shell/core junction.
Some Examples

5-Site System

4AA/PD

9-Site System

6AA/3PD

more examples: *better encapsulation of core*

\[
X = \text{OMe} \\
C_{142}H_{129}N_{10}O_{16}, \text{ 2231g/mol}
\]

8AA/1PD 9-site array
more examples: manipulation of core group and potential

E_1^{0.9} = 0.35 V
estimated gradient = 0.32 V

E_1^{0.9} = 0.31 V
estimated gradient = 0.36 V

THE UNIVERSITY OF ALABAMA
more examples: changing the shell potential

Predicted redox gradient: ~ 0.8 V

pPD core EP ~ 0.48 V

AA shell EP ~ 1.28 V
gradient
core ~ 0.34 V
PD middle ~ 0.47 V
Ar₂N- outer ~ 0.67 V

12AA/6PD/PT
19 site array

X=OMe
C₁₄₂H₁₂₉N₁₀O₁₆, 2231g/mol
Do the shell/core dendrimers charge localize at the core as planned?

yes, as evident by:

- Oxidation Potentials
- UV-vis-nIR
- ESR of radical cations
oxidation of 4AA/PD

4AA/1PD
5-site shell/core array

\[E_1 = 0.49 \]

\[E_2 = E_3 = 0.87 \text{ V vs SCE} \]

\[E_1^{\circ} = 0.46 \text{ V} \]

\[E_2^{\circ} = 0.92 \text{ V} \]

\[E_1^{\circ\prime} = 0.48 \text{ V} \]

\[E_2^{\circ\prime} = 0.86 \text{ V} \]

\[E_3^{\circ\prime} = 0.98 \text{ V} \]
UV-vis-nIR of PD radical cations

Internal charge-transfer excitation in nIR of 2AA/PD and 4AA/PD

THE UNIVERSITY OF ALABAMA
ESR of 4AA/PD radical cation

ESR for 4AA/PD⁺:

\[a(2N) = 5.75 \text{ G} \]

\[a(12H) = 0.214 \text{ G} \]

\[a(8H)_{\text{meta}} = 0.384 \text{ G} \]

\[a(8H)_{\text{ortho}} = 0.567 \text{ G} \]

\[a(4H) = 0.774 \text{ G} \]
study bulk film electronic switching properties

- film preparation: spin coating on ITO glass
- electrolyte: 0.1 M NaClO₄ in H₂O
Charge injection in TAPD films on ITO glass

\[\text{TAPD} \]

E(1) = 0.36 V
E(2) = 0.81 V
TBAP in CH\(_2\)Cl\(_2\)

Charging of film in aq. electrolyte
0.1 M NaClO\(_4\)/H\(_2\)O

solution

<table>
<thead>
<tr>
<th>I (µA)</th>
<th>E (mV) vs. SCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

film

<table>
<thead>
<tr>
<th>Q (mC)</th>
<th>time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

- CPC at 0.55 V
- CPC at 0.90 V
CPC of 100 nm films on ITO-glass electrode

The diagram shows the electrochemical potential (E°) of different compounds: TAPD (0.46), 2AA/PD (0.48), and 4AA/PD (0.49). The graph plots charging at 0.55 V of 100 nm films on ITO, with the mask giving a 0.31 cm2 film.
Charge migration in films

Vapor deposited 300 nm films

Film emersion in aq NaClO₄

9 hours

Shell/core pattern of redox array influences charge transport kinetics
to charge the core of the core/shell film...

charge the shell & core, then discharge shell.

need isolably stable shell-charged RG dendrimer
-- work in progress … see poster.
• Conclusions

• a variety of redox-gradient shell/core arrays have been synthesized

• cation states reside exclusively at the core of shell/core structures

• charge transport between molecules in shell/core films (under core potentials) is poor in redox-gradient shell/core arrays

• core-charged bulk films can be prepared only by shell/core “over charging” followed by shell discharging