A Study of Damping, Magnetoelastic Properties, and Nitrogen Content in FeTiN Films

Jim Rantschler, Yunfei Ding, and Chet Alexander
Center for Materials for Information Technology and Department of Physics and Astronomy
The University of Alabama

Spring Review, 2002

Research sponsored by NIST Project # 43RANB1B1604
And University of Alabama MINT Center
Introduction

We have found that the anisotropy of FeTiN films is stable at small substrate-target sputtering distances for Nitrogen content below 6%. (Y. Ding, S-C. Byeon and C. Alexander, Jr., IEEE Trans. Magn 37, 1776 (2001)).

We have prepared stable films and are investigating the effects of structure and elastic effects on the LLG damping constants in stable films as a function of Nitrogen content.

Experimental techniques include VSM, FMR, XRD, XPS, magnetostriction, stress, and permeability measurements.
XRD and Thermal Stability Measurements of FeTiN Films with Different Nitrogen Concentrations

at% N in FeTiN
18.86 at% N
15.39 at% N
13.51 at% N
11.16 at% N
11.99 at% N
9.88 at% N
8.51 at% N
6.76 at% N
6.05 at% N
5.33 at% N
2.95 at% N
0.00 at% N

Rotation of Hk after 1hr 100°C DC PTA

THE UNIVERSITY OF ALABAMA
Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
FeTiN Magnetostriction

FeTiN Magnetostriction versus N%
Permeability Data

FMR Data

\[f = \gamma \sqrt{(H + H_k + 4\pi M_s)(H + H_k)} \]
FeTiN 0% N

$\Delta H = \Delta H_0 + 1.16 \frac{\alpha f}{\gamma}$

$\alpha = \alpha_0 + \frac{\Delta H_k}{\sqrt{M_s} \sqrt{H_k + H_b}}$

FeTiN 6-05%

$H_0 = 111$ Oe

$M_s = 1384$ emu/cc

$\alpha_0 = 0.0047$

$\Delta H_k = 1.8$ Oe

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
ΔH_0 and α_0 Values vs. Nitrogen Content
Conclusions and Future Studies

Our initial experiments show a correlation between sample inhomogeneities, as represented by the ΔH_0 value, and the sample magnetoelastic properties.

We are preparing samples for TEM measurements to investigate the grain size as a function of Nitrogen content.

We will be using optical techniques to investigate correlations between sample volume, inhomogeneities and damping constants.