Perpendicular Media

SYNTHETIC ANTIFERROMAGNETIC SOFT UNDERLAYERS

S. C. Byeon, A. Misra and W. D. Doyle

HIGH SPEED SWITCHING

– EXPERIMENTAL
 V. G. Voznyuk and W. D. Doyle

– MODELING
 A. Misra and P. B. Visscher
Synthetic Antiferromagnetic Soft Underlayers

❖ Advantages

• Fe$_{65}$Co$_{35}$ / Ru / Fe$_{65}$Co$_{35}$ with thick ferromagnetic layer
• Better thermal stability than IrMn-based films
• Ideal soft underlayers
 – No edge demagnetization
 – Low interaction with
 – Improved efficiency for magnetic flux return
 ▪ Thinner spacer layer (~0.8 nm) than the 10 nm thick IrM
Calculation of the Expected Film Parameters

- Fe$_{65}$Co$_{35}$/Ru/Fe$_{65}$Co$_{35}$ bilayer film parameters
 - Saturation field H_S (the field at which the moment has attained 80% of the saturation moment)
 - Permeability $\mu = 1 + 4\pi M_s / H_S$

- $J_{AF} = 1.6$ erg/cm2 [1]
- $4\pi M_s = 23$ kG
- $H_s = 230$ Oe is required for $\mu = 100$
- Fe$_{65}$Co$_{35}$ thickness = 76 nm

Dependence of J_{AF} on FeCo Thickness

![Graph showing the dependence of J_{AF} on FeCo thickness. The graph plots J_{AF} (erg/cm2) against t_F (nm). The data points indicate a sharp decrease in J_{AF} as t_F increases from 0 to 50 nm, followed by a plateau at higher thicknesses.](image-url)
Calculated and Experimental Hysteresis Loops for a Bilayer Structure

Glass/ Ru(2.5 nm)/ FeCo(50 nm)/ Ru(1.0 nm)/ FeCo(50 nm)/ Ru(10 nm)

![Graphs showing calculated and experimental hysteresis loops for a bilayer structure.](image_url)
Angular Dependence of the Hysteresis in a Bilayer Structure

Glass/ Ru(2.5 nm)/ FeCo(50 nm)/ Ru(1.0 nm)/ FeCo(55 nm)/ Ru(10 nm)
Thermal Stability

glass/ Ru(2.5 nm)/ FeCo(50 nm)/ Ru(1.0 nm)/ FeCo(55 nm)/ Ru(10 nm)

(a) Easy axis loop shift (Oe) vs. Temperature (°C)

(b) J_{AF} (erg/cm²) vs. Temperature (°C)

Legend:
- ■ H_p at RT
- ○ H_p at T
- ■ J at RT
- ○ J at T
Improved Characteristics in a Trilayer

Glass/ Ru(2.5 nm)/ FeCo(25 nm)/ Ru(1.0 nm)/ FeCo(45 nm)/ Ru(1.0 nm)/
FeCo(25 nm)/ Ru (10 nm)

The University of Alabama
Negative remanence

Glass/ Ru(2.5 nm)/ FeCo(50 nm)/ Ru(1.0 nm)/ FeCo(55 nm)/ Ru(10 nm)

Observed loop

Calculated loop

Possible misalignment of the easy axes during film deposition.

The University of Alabama
Annealing experiment

Glass/ Ru(2.5 nm)/ FeCo(50 nm)/ Ru(1.0 nm)/ FeCo(55 nm)/ Ru(10 nm)

Annealing in a 1T field for one hour aligns the easy axes.

Calculated loop

Observed loop

The University of Alabama

Fall Review 2003
Future Plans

- Optimize the design based on modeling results.
- Extend the model to include magnetization twist.
- Demonstrate improved characteristics in structures with aligned anisotropies.
- Investigate bilayer with Rh spacer layers to achieve higher J_{AF} values.
Time Dependent Remanent Coercivity in Perpendicular Recording Media

❖ Motivation and challenges

• Previously, using a unique pulse field magnetometer, we have measured the time-dependent coercivity down to 10^{-9} s for a wide variety of longitudinal media.

• Perpendicular media presents several challenges to us:
 - high intrinsic switching fields;
 - less compatible geometry for microstripline measurements;
 - smaller stray fields;
 - strong signal from the soft underlayer.
Experimental Setup
Pulse Generation and Sample Magnetization State Detection

High Voltage DC Power Supply -> R
-> Coaxial Cable RG-213
-> Trigger Unit
-> Switch Unit (Spark Gap)
-> Transient Digitizer SCD 1000

Hall Probe + F.W.Bell Gaussmeter 9900

Saturating Permanent Magnet

Ground Plane

Microstripline
Conductor: Copper 120 x 15 µm
Insulator: Kapton, 50 µm

The University of Alabama
Microstripline Configuration

Sample preparation

1. Substrate
2. 90° Magnetic film
3. Magnetic film
4. Cross-sectional view

Cross-sectional view

- Copper strip conductor: 120 x 15 μm
- Insulator Kapton: 50 μm
- Sample substrate
- Ground plane
- Epoxy
- Magnetic layer: 18 μm x 3 mm x t

The University of Alabama

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Differential detection

Peak position determination

Signal measured at peak position is proportional to the remanent magnetization

Sample: Ta (5nm) / Ti$_8$Zr$_2$ (40nm) / CoCrPtB (16nm) (from Seagate)

1 P.J. Flanders (private communication)
9 kOe field pulse!

Sample: Ta (5nm) / Ti$_8$Zr$_2$ (40nm) / CoCrPtB (16nm) (from Seagate)
Perpendicular Media with Soft Underlayer

Glass / NiAl / CoNb₈Zr₅ / NiAl/CrTa / CoPt₁₂Cr₁₈ / C
7 nm 400 nm 4 nm 1 nm 20 nm 5 nm

Sample is provided through INSIC–EHDRM by Yoshihiro Ikeda, IBM Almaden Research Center

Recording layer (RL)
Ms ≈ 0.75 memu/cm²

Soft Underlayer (SUL)
Ms ≈ 34 memu/cm²
Hc < 0.1 Oe (10 Hz)
Suppression of the SUL Signal

Helmholtz coils
\[H_x = 32 \text{ Oe}, 200 \text{ Hz} \]

Microstrip Line
Moving stage with Vibrator
19.5 Hz

Audio Amplifier

Coaxial Cable RG-213
Charging Resistor
300 M\(\Omega\)-300 G\(\Omega\)

High Voltage DC Power Supply

High-Voltage Connectors:
THT.20 series (Radiall)
Attenuator: 2237- HFNFP (Barth Electronics)

Function Generator

Low-Voltage Connectors:
Analog output

Switch Unit (Spark Gap)

Gaussmeter
F.W.Bell 9900
int. osc. 5 kHz

Lock-in Amplifier
SR 830

X-position Pulse
PC
Start/ Stop/ Settings

Audio Amplifier
Resistor

Transient Digitizer
SCD 1000

Hall Probe

Resistor

Motor

Function Generator

The University of Alabama
Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Hcr(t) Data

- **Pulse data**
- **MOKE long time data**
- **Sharrock's fit**

Equations:

- $n = 2/3$ (Sharrock's fit)
- $H_0 = 6.0 \pm 0.2$ kOe
- $KV/kT = 170 \pm 20$
Dependence of Switching on the Initial Remanent State

The University of Alabama
Dependence of Switching on the Initial Remanent State. Simulation.

(by A. Misra and P. B. Visscher)

States with remanent magnetization $M_i < M_{rs}$ obtained by:

(a) reversing the grains with lowest H_k, to mimic the effect of a long-duration external field $H < H_c$;

(b) 2.3 ns pulsed field of amplitude 5.3 kOe.
Future Plans

- Measure remanence dependence vs. pulse width.
- Measure $H_{cr}(t)$ after pulse demagnetization.
- Study the role of low-coercivity grains – nucleate switching. (May lower coercivity without thermal instability).