Noise Characteristics
in Magnetic Tunnel Junctions

Zhihong Lu, L. Navarrete, J. Dou, H. Alouach
P. Delay, E. Watkins, Robert Hamner, J.W. Harrell, R. Schad
Department of Physics and
MINT Center, University of Alabama, Tuscaloosa, AL 35487

M. Shamsuzzoha
SOMED, University of Alabama, Tuscaloosa, AL 35487

D. Wang
NVE Inc., 11409 Valley View Road, Eden Prairie, MN 55344

This work is supported by BMDO and makes use of the
NSF MRSEC Shared Facilities, grant # DMR- 0213985.
Superparamagnetic tunnel junctions

Tunnel-magnetoresistance specifications

- sensitivity
- absolute resistance
- hysteresis H_c
- signal noise

THE UNIVERSITY OF ALABAMA
Superparamagnetic tunnel junctions
Tunnel-magnetoresistance specifications

- sensitivity
- absolute resistance
- hysteresis H_c
- signal noise
Superparamagnetic tunnel junctions
Thermally unstable magnetization

Arrhenius equation:

\[\frac{1}{\tau} = f_0 e^{-\Delta E/kT} \]

\[\Delta E = K_{\text{anisotropy}} \times \text{Volume} \]
Superparamagnetic tunnel junctions

Magnetization of superparamagnetic particles

\[L(a) = \coth(a) - \frac{1}{a} \]

\[a = M_s \times \text{Vol} \times H / kT \]

volume

magnetic field

temperature

NiFeCo 1 \(\mu_B \)/300K

\[\frac{M}{M_s} \text{ vs. } H \text{ (Oe)} \]
Cu / 0.8 nm NiFeCo / Cu

(400)_{FM}
(400)_{Cu}

(222)
(220)
(200)
(111)
Superparamagnetic tunnel junctions

Cu / 0.8 nm NiFeCo / Cu

The graph shows the magnetic field (Oe) on the x-axis and the magnetic moment (mu) on the y-axis. The graph includes data for three temperatures: 170 K, 270 K, and 310 K, indicated by the different lines and symbols.
Superparamagnetic tunnel junctions

Cu / NiFeCo / Cu

0.8 nm

0.6 nm

\(H_c \) (Oe)

slope (memu/Oe)

\(M_s \) (emu/cc)

\(M_s \) (emu/cc)

temperature (K)

temperature (K)
Superparamagnetic tunnel junctions

hysteresis-free magnetic field sensor

- Voltage (V) vs. Field (Oe)

- Materials:
 - CrMnPt
 - FeCo
 - Al₂O₃
 - NiFeCo
 - Ru

- Resistance: $R = 20 \, \text{k}\Omega$
Superparamagnetic tunnel junctions

Tunnel-magneto-resistance specifications

- sensitivity
- absolute resistance
- hysteresis H_c
- signal noise

THE UNIVERSITY OF ALABAMA
Thermal Fluctuations and Noise in Superparamagnetic Nanoparticles
Asymmetric RTS (Random Telegraph Signal) Noise

\[S(\omega) \sim \left\{ (\tau_1 + \tau_2) \left[\left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right)^2 + \omega^2 \right] \right\}^{-1} \]

\[\tau_1 = \tau_0 \exp(-\Delta E_1 / kT), \quad \tau_2 = \tau_0 \exp(-\Delta E_2 / kT) \]

\[\Delta E_{1,2} = \frac{K_u V}{kT} (1 \mp h)^2, \quad h = \frac{H}{H_k} \]

Temperature and Frequency Dependence of Noise at $H = 0$

\[\omega = 1 \]

\[\omega = 10 \]
Field Dependence of Noise

\[KV/ kT = 18 \]

\[\omega = 1 \]

\((h = H / H_k) \)
Superparamagnetic tunnel junctions

The SDT sensor
Noise measurements in superparamagnetic tunnel junctions

Setup

- Batteries
- Low noise preamplifier
- Control System Analyzer
- DAC Card
- Coolers
- Thermocouple
- Shields

Operating conditions:

- ± 50 Oe
- 250K - 320K
- 60 µHz - 100 kHz
- (planned: -20 GHz)

THE UNIVERSITY OF ALABAMA
Noise measurements in SPM tunnel junctions
preliminary results

Low frequency peak in noise spectrum @ switching point
Noise measurements in superparamagnetic tunnel junctions

Planned Work

- Extension of experimental capabilities up to 30 GHz
- Noise measurement as a function of: frequency, field, temperature and voltage
- Transport and Magnetization measurements of superparamagnetic layers