Antiferromagnets for Heads and Media

G.J. Mankey

&MINT Center, The University of Alabama

These projects are funded by grants from NSF and DOE/EPSCoR
Antiferromagnets for Spintronics

• **PSMO Manganite**
 – **AF-F Transition**
 – Prelim experiment at PSI
 – HFIR experiments in progress

• **Thin film antiferromagnets**
 – Exchange bias effect
 – Spin ordering transitions
 – Critical exponents
 – Spin waves
 – **IrMn/F**
 – Underlayer optimization

• **Artificial Antiferromagnets**
 – USA
Structural, Magnetic and Transport Properties of $\text{Pr}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$

(H. Kawano et al., PRL 78, 4253, 1997)

- Curie Temperature $T_C \sim 265$ K
- Ferromagnetism and metallic behavior above 140 K due to double exchange interaction
- Néel Temperature $T_N \sim 140$ K (A-type Antiferromagnetic structure)
- Space group: P21/n. Lattice constants; $a=5.360$ Å, $b=7.813$ Å, $c=5.377$ Å (T=110 K)
- Antiferromagnetic state is semiconducting

A-type Antiferromagnet

Ref: Poster by Ref. V.V. Krishnamurthy et al.

Ref: Poster by Ref. V.V. Krishnamurthy et al.

THE UNIVERSITY OF ALABAMA

Center for Materials for Information Technology
an NSF Materials Science and Engineering Center
PSMO Measured on RITA II

- The RITA II spectrometer is a horizontally focusing monochromator on the Swiss Spallation Neutron Source.
- Sample was grown by John Mitchell of ANL.
- The phase transition behavior indicates that the composition is stoichiometric.
- The detailed scan of the antiferromagnetic ordering peak indicates multiple domains.
- Acquisition time for the phase transition was ~ 1 day.

Ref. V.V. Krishnamurthy et al., submitted to J. Appl. Phys. (Intermag 2004)
RITA II Multicrystal Analyzer

- Analyzer consists of seven graphite monochromator crystal blades which can be rotated separately for horizontal focusing.
- A 4 fold increase of count rate was observed for the monochromatic focusing mode.
- A similar device with nine blades is being developed in collaboration with J.L. Robertson.

Inelastic Neutron Diffraction

- Measures spin wave dispersion relations, E_g, D_{sw}.
- E_g is energy gap → information about the strength of the coupling (exchange constant) J ($E = J S_1 S_2$)
- D_{sw} is “spin wave stiffness”. $E = E_g + D_{sw} q^2$ tells about dynamics.
- RITA II at PSI was used for this measurement.

Ref: Poster by Ref. V.V. Krishnamurthy et al.

THE UNIVERSITY OF ALABAMA

Center for Materials for Information Technology
an NSF Materials Science and Engineering Center
Spin Waves in PSMO Measured at HFIR

- Spin wave dispersion for q perpendicular to FM planes.
- HFIR HB3 beamline was used – it has a 40x improvement in count rates over RITA II.
- The broad excitation around 14 meV is from Pr crystal fields.
- We will measure charge ordering behavior next.

Ref: Poster by Ref. V.V. Krishnamurthy et al.
F/AF Exchange Bias

- When a ferromagnet (F) is deposited on an antiferromagnet (AF) in an applied field, the hysteresis loop of the F film is altered in two ways:
- There is a bias (or shift) of the hysteresis loop by an amount called H_p or the pinning field.
- There is an enhancement of the coercive field, H_c, particularly along the direction of the applied field.
- The origin of this effect is FM defects in the antiferromagnet.
- The anisotropy of the antiferromagnet controls the magnitude of the effect.
Antiferromagnetic Spin Ordering in FePt$_3$

- Two types of spin ordering are observed in the bulk material.
- There is a spin ordering transition from $[1/2 0 0]$ to $[1/2 1/2 0]$ at 100 K.
- The Néel temperature is 165 K for the stoichiometric material and is composition dependent.
- This films on sapphire and MgO were studied with neutron diffraction.

Antiferromagnetic Spin Ordering of FePt$_3$ Films

- The epitaxial films are ~300 nm thick and (111) oriented on sapphire substrates.
- The Fe$_{30}$Pt$_{70}$ film exhibits only $[1/2 \ 0 \ 0]$ spin ordering with a Néel temperature of 140 K.
- The Fe$_{27}$Pt$_{73}$ film exhibits a spin ordering transition from $[1/2 \ 0 \ 0]$ to $[1/2 \ 1/2 \ 0]$ at 100 K and a Néel temperature of 160 K.
- These measurements showed thin films exhibit different behavior than bulk samples.

Spin Hamiltonian

\[H = -\frac{1}{2} \sum_{R,R'} \left[J_z (R - R') S_z(R) S_z(R') + J_{\parallel} (R - R') \vec{S}_{\parallel}(R) \cdot \vec{S}_{\parallel}(R') \right] \]

- The anisotropic Heisenberg Hamiltonian is described by two coupling parameters.
- \(J_z \) is the out of plane coupling.
- \(J_{\parallel} \) is the in-plane coupling.
- Special cases are Ising (\(J_{\parallel} = 0 \)), XY (\(J_z = 0 \)), isotropic Heisenberg (\(J_z = J_{\parallel} \)).
- The ratio of \(J_z / J_{\parallel} \) gives the anisotropy.
Relation of Critical Exponent to Dimensionality and Anisotropy

- Contours of constant β are shown in the space dimensionality, spin dimensionality plane.
- Subtle differences of β are due to microscopic properties of the sample.
- For 3D systems, increasing β indicates reduced anisotropy.
- In thin films approaching 1 nm thick, β becomes 2D-like.*

Determining Spin Ordering from Power Laws

- The critical behavior depends on the universality class of the system.
- The magnetization power law exponent, β, is 0.125 for the 2D Ising model, 0.24 for the finite-size 2D XY model and 0.34 for the 3D Heisenberg model.
- Determination of β provides an insight into the type of magnetic ordering.
Critical Exponent of an Epitaxial FePt$_3$ Thin Film

- The inset shows the log-log plot of intensity versus the reduced temperatures.
- From the fitting the order parameter exponent is found to be $\beta = 0.368(13)$ which corresponds to 3D Heisenberg model.
- A comparison with bulk indicates the films have a reduced anisotropy.
- Subtle changes in magnetic anisotropy due to lattice strain induced during the epitaxial growth and/or chemical disorder associated with compositional inhomogenieties may be the origin of these differences.
- Future experiments will focus on measurements of spin waves for a similar thin film system.

Ref: V.V. Krishnamurthy et al., submitted to Phys. Rev. B

THE UNIVERSITY OF ALABAMA
Non-linear Relationship between J and M_s

G/Ta(20)/Cu(20)/IrMn(10)/FM(t nm)/Cu(2)/Ta(5)

$J = \alpha (M_s - M_{s\text{critical}})^\beta$

- Annealed

 \[
 J_{ex} = 0.0059(M_s - 450)^{0.55} \\
 J_{eb} = 0.0034(M_s - 449)^{0.61}
 \]

- As-deposited

\[
J_{ex} = 0.0295(M_s - 589)^{0.29} \\
J_{eb} = 0.0194(M_s - 575)^{0.30}
\]

Ref: Poster by H.S. Jung et al.

THE UNIVERSITY OF ALABAMA
Underlayer optimization of Exchange Biased CoFe/Ru/CoFe/IrMn

A thick Cu seed layer ~ 300 A results in appreciable exchange bias and well separated minor loops.

Ref: Poster by P. Mani et al.
Uniaxial Synthetic Antiferromagnets

- Strong antiferromagnetic exchange coupling was observed in USA structures.
- Distinguishable Easy and Hard axis loops were also observed.
- We can tune the biquadratic coupling effect.

Ref: Poster by Z. Zhao et al.
Uniaxial Synthetic Antiferromagnetic Films

- Comparison of experimental remanence with a calculation which only considers bilinear coupling. The difference is due to biquadratic coupling.
- Dependence of easy axis critical fields H_{cr1} and H_{cr2} on top layer Co thickness. The dotted line is a fit to a minimize energy model.

Ref: Poster by Z. Zhao et al.
Picomotor for Multicrystal Analyzer

- Model 8310 closed-loop Picomotor™ actuator is ideal for applications where closed-loop control and absolute position calibration is required.
- The small footprint, 0.67 in., makes it ideal for the multicrystal analyzer application.
- Driver software and testing is currently in progress.
New Deposition System at UA

- New system will allow fabrication of 2” diameter samples with better uniformity.
- Eight targets *with* in situ chemical analysis makes this system unique.
Outlook

• Antiferromagnetic materials are used in magnetic information storage devices.
• Neutrons allow measurements of the fundamental properties of these materials.
• Our ultimate goal is to perform diffraction and inelastic measurements on thin film samples.
• We have made considerable progress toward achieving this goal.