Noise Characteristics of Superparamagnetic Tunnel Junctions

Department of Physics and
MINT Center, University of Alabama, Tuscaloosa, AL 35487

M. Shamsuzzoha
SOMED, University of Alabama, Tuscaloosa, AL 35487

D. Wang
NVE Inc., 11409 Valley View Road, Eden Prairie, MN 55344

This work is supported by BMDO and makes use of the
NSF MRSEC Shared Facilities, grant # DMR- 0213985.
Superparamagnetic tunnel junctions

Tunnel-magnetoresistance specifications

sensitivity

absolute resistance

hysteresis H_c

signal noise
Superparamagnetic tunnel junctions

Tunnel-magneto-resistance specifications

- Sensitivity
- Absolute resistance
- Hysteresis H_c
- Signal noise
Superparamagnetic tunnel junctions
Thermally unstable magnetization

Arrhenius equation:

\[\frac{1}{\tau} = f_0 e^{-\Delta E / kT} \]

\[\Delta E = K_{\text{anisotropy}} \times \text{Volume} \]
Superparamagnetic tunnel junctions

Magnetization of superparamagnetic particles

\[
L(a) = \coth(a) - \frac{1}{a}
\]

\[
a = M_s \cdot \text{Vol} \cdot H / kT
\]

- volume
- magnetic field
- temperature

![Graph of NiFeCo 1 μ_B / 300K](image)
1.6 nm NiFeCo

- glue
- Cu
- Cu
- Si₃N₄
- NiFeCo
Cu / 0.8 nm NiFeCo / Cu

(400)_{FM}
(400)_{Cu}

(222)
(220)
(200)
(111)
Superparamagnetic tunnel junctions

Cu / 0.8 nm NiFeCo / Cu

\[\mu \text{ (memu)} \]

magnetic field (Oe)

170 K
Superparamagnetic tunnel junctions

Cu / 0.8 nm NiFeCo / Cu

![Graph showing magnetic field vs. magnetic moment for 170 K and 270 K temperatures.](image-url)
Superparamagnetic tunnel junctions

Cu / 0.8 nm NiFeCo / Cu
Superparamagnetic tunnel junctions
Cu / NiFeCo / Cu

0.8 nm

0.6 nm

Center for Materials for Information Technology
A NSF Materials Research Science and Engineering Center
Superparamagnetic tunnel junctions

hysteresis-free magnetic field sensor

![Graph showing voltage vs. field for different materials]

- CrMnPt
- FeCo
- Al₂O₃
- NiFeCo
- Ru

\[R = 20 \text{ k}\Omega \]
Superparamagnetic tunnel junctions

Tunnel-magnetoresistance specifications

- sensitivity
- absolute resistance
- hysteresis H_c
- signal noise
Thermal Fluctuations and Noise in Superparamagnetic Nanoparticles
Asymmetric RTS (Random Telegraph Signal) Noise

\[S(\omega) \sim \left\{ (\tau_1 + \tau_2) \left[\left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right)^2 + \omega^2 \right] \right\}^{-1} \]

\[\tau_1 = \tau_0 \exp(-\Delta E_1 / kT), \quad \tau_2 = \tau_0 \exp(-\Delta E_2 / kT) \]

\[\Delta E_{1,2} = \frac{KuV}{kT} (1 \mu m)^2, \quad h = \frac{H}{H_k} \]

Temperature and Frequency Dependence of Noise at H = 0

![Graph showing the temperature and frequency dependence of noise at H = 0. The graph plots KV/kT on the y-axis and omega on the x-axis for different values of omega (1 and 10).]
Field Dependence of Noise

$$\frac{KV}{kT} = 18$$

$$\omega = 1$$

$$h = \frac{H}{H_k}$$

THE UNIVERSITY OF ALABAMA
Superparamagnetic tunnel junctions
The SDT sensor
Noise measurements in superparamagnetic tunnel junctions

Setup

Shields

Cooler

Sample

Thermocouple

Batteries

Low noise preamplifier

DAC Card

Control System Analyzer

+- 50 Oe
250K - 320K
60 µHz - 100 kHz
(planned: -20 GHz)
Noise measurements in SPM tunnel junctions

preliminary results

![Graph showing noise voltage (mV) vs. time (s) and magnetic field (Oe).]
Noise measurements in SPM tunnel junctions
preliminary results

@ switching point
[zero field]
under applied field
Noise measurements in superparamagnetic tunnel junctions

Planned Work

• Noise measurement as a function of: frequency, field, temperature and voltage

• Transport and Magnetization measurements of superparamagnetic layers