Microstructure and Damping in FeTiN and CoFe films

James Rantschler, Yunfei Ding, Soon-Cheon Byeon and Chester Alexander, Jr.,
Department of Physics and Astronomy and the Center for Materials for Information Technology, University of Alabama, 35487-0209.

This work was sponsored in part by the National Institute of Standards and Technology’s Nanotechnology Initiative, Contract # 43RANB1B1604, from Seagate Research, and from the University of Alabama MINT Center. We also acknowledge the CoFe samples supplied to us by Hong- Sik Jung.
Introduction

This study was carried out to look for relationships between damping in ferromagnetic films and magnetostriction or microstructure. Sputtered films of FeTiN, CoFe and CuCoFe were prepared and characterized by FMR, XRD, XPS, and magnetostriction measurements, to examine these possible relationships. The FMR studies have been carried out at multiple frequencies to determine the intrinsic damping constant, α, and the extrinsic damping constant, ΔH_0, as well as values of the anisotropy field H_k, the gyromagnetic ratio, γ, and the saturation magnetization value $4\pi M_s$.
FMR Determination of $4\pi M_s$, H_k and γ

Ferromagnetic resonance (FMR) studies were used to determine the values of H_k, $4\pi M_s$ and the gyromagnetic ratio, γ, by rotating the sample in the plane of the films to determine the H_k value ($(H_{HA} - H_{EA})/2$), and then finding the $4\pi M_s$ and γ values from a fit to

$$f = \gamma \sqrt{(H + H_k + 4\pi M_s)(H + H_k)}$$

for a plot of the square of the resonance frequency against the resonance field. A plot for a sample with 6.1% N is shown in Fig. 1. Values of H_k, $4\pi M_s$ and γ, determined for a range of films with different N content are given in Table I.
FMR Determination of α and ΔH_0

Previous investigators (1) have shown that the FMR linewidth ΔH can be related to the damping and can be expressed as

$$\Delta H = \Delta H_0 + 2 \frac{\alpha f}{\gamma}$$

The frequency dependent part is a good measure of the intrinsic or viscous damping described by α in the Landau-Lifshitz-Gilbert equation, whereas the extrinsic term ΔH_0 is thought to be related to magnetic inhomogeneities (2). A graph of the FMR linewidth versus frequency for a sample with 6% nitrogen is shown in Fig. 2. Values of ΔH_0 and α were determined by fits to these data and the results for FeTiN films with a range of nitrogen content are shown in Table I.
FMR Data for FeTiN with 6% N

Figure 1.

Figure 2.

\[\Delta H_0 = 16 \text{ Oe} \]
\[\alpha = 0.0047 \]

\[4\pi M_s = 16371 \text{ Oe} \]
\[\gamma = 2.95 \text{ MHz/Oe} \]
\[H_k = 11 \text{ Oe} \]
TEM and Grain Size for FeTiN

Glass/FeTiN 50nm

0% N\textsubscript{2}

1cm scale=87nm

22.2 ± 6 nm

Glass/FeTiN 50nm

6% N\textsubscript{2}

1cm scale=87nm

9.6 ± 2.5 nm

THE UNIVERSITY OF ALABAMA

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center
Grain Size and Nitrogen Content in FeTiN Films

Exchange length calculations for FeTiN and CoFe, using

\[L_{ex} = \sqrt{\frac{A}{2\pi M_s^2}} \]

give \(L_{ex} = 4 \) nm for FeTiN and \(L_{ex} = 3 \) nm for CoFe
ΔH_0 values versus Grain Size for FeTiN and Cu/CoFe

Center For Materials For Information Technology
An NSF Materials Research Science and Engineering Center

THE UNIVERSITY OF ALABAMA
Linewidths and ΔH_0 for CoFe and Cu/CoFe
Microstructure and Magnetic Properties of FeTiN and CoFe

<table>
<thead>
<tr>
<th>%Nitrogen</th>
<th>$4\pi M_s$ (Oe)</th>
<th>H_k (Oe)</th>
<th>γ (MHz/Oe)</th>
<th>ΔH_0 (Oe)</th>
<th>α</th>
<th>λ ($\times 10^{-6}$)</th>
<th>Grain size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19523</td>
<td>0</td>
<td>2.90</td>
<td>164</td>
<td>.005</td>
<td>-7</td>
<td>28</td>
</tr>
<tr>
<td>1.5</td>
<td>16951</td>
<td>7</td>
<td>3.05</td>
<td>53</td>
<td>.007</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>16800</td>
<td>10</td>
<td>2.99</td>
<td>32</td>
<td>.005</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>6.1</td>
<td>16371</td>
<td>11</td>
<td>2.95</td>
<td>16</td>
<td>.005</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>CoFe</td>
<td>23250</td>
<td></td>
<td>3.1</td>
<td>525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu/CoFe</td>
<td>23210</td>
<td>28</td>
<td>2.93</td>
<td>28</td>
<td>0.004</td>
<td>90</td>
<td>9</td>
</tr>
</tbody>
</table>
Conclusions

We observe no variation in the intrinsic damping constant α as a function of microstructure in FeTiN samples, but we do find that the parameter ΔH_0 depends strongly on the size of grains relative to the exchange length: as the grain size approaches the exchange length, ΔH_0 decreases. In CoFe samples we find the same ΔH_0 vs. grain size relationship, but no observation of an α and microstructure relationship was possible because the intrinsic damping was obscured by the extrinsic linewidth for the CoFe sample. Our results are consistent with the results of Celinski and Henrich for amorphous and ultrathin samples (3). We observe no plausible relationship between magnetostriction and either the intrinsic or extrinsic damping parameters in either FeTiN or Cu/CoFe films.
References

