Superparamagnetic Interlayer Formation in AFM/FM Exchange Coupled Films

H.S. Jung, O. Traistaru, and H. Fujiwara

MINT Center and Department of Physics and Astronomy, The University of Alabama

This project was funded by MINT Center & shared equipment from NSF-DMR-0213985.

Conclusion

In-plane isotropic reversible M-H curves with zero remanence, characteristic of superparamagnetism, were observed in various FM layers on IrMn.

Ferromagnetic nature is more deteriorated when a FM layer with a lower value of M_s is exchange coupled with the IrMn layer.

The effective critical thickness $t_{c_{eff}}$ for exhibiting superparamagnetic nature increases exponentially with decreasing M_s.

G/Ta(20)/Cu(20)/IrMn(10)/(NiFe)$_{71}$Cu$_{29}$(t nm)/Cu(2)/Ta(5)

Abnormal M-H Curves in IrMn/(NiFe)$_{71}$Cu$_{29}$ Films

For more information and reprints contact:
H.S. Jung, MINT Center.
Tel: 205-348-0449, e-mail: jung001@bama.ua.edu

<table>
<thead>
<tr>
<th>Ferromagnetic and Antiferromagnetic Materials Used</th>
<th>M_s (emu/cm3)</th>
<th>T_c (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCo</td>
<td>800</td>
<td>1910</td>
</tr>
<tr>
<td>NiFe</td>
<td>440</td>
<td>348</td>
</tr>
<tr>
<td>Ni</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>(Ni${80}$Fe${20}$)${77}$Cu${23}$</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>(Ni${80}$Fe${20}$)${71}$Cu${29}$</td>
<td>200</td>
<td>80</td>
</tr>
</tbody>
</table>

M-H Curves with Zero Remanence in Various FM Layers

$H_{po} = M_s / \chi_\perp = H_K F M + (H_{eb} + \Delta H_c)$

where, $\Delta H_c = H_{c AFM/FM} - H_{c FM}$

$V_{cluster} = \mu / M_s = \mu H_{po}$

Estimation of a Magnetic Dead Thickness t_{dead} and M_s

M-H Curves with zero remanence, characteristic of superparamagnetism, were observed in various FM layers on IrMn.

The non-hysteretic M-H curves for single and (NiFe-Co)Cu/IrMn films were fit quite well to the formula using the Langevin function.

Squareness Ratio (SQ)

$V_{cluster} = \mu / M_s$

Estimation of a Superparamagnetic Cluster Volume

Langevin Function $MM_0 = \coth(\mu H/k_BT) - 1/(\mu H/k_BT)$

$\nu_{cluster} = \mu / M_s$

Effect of Ferromagnetic Thickness on SQ and H_{eb}

There was strong dependence of M_s on magnetic alignment in the FM layer and H_{eb}.

Estimation of a Magnetic Dead Thickness t_{dead} and M_s

M-H curves with zero remanence, characteristic of superparamagnetism, were observed in various FM layers on IrMn.

Effect of M_s on the Effective Critical Thickness $t_{c_{eff}}$

The smaller the M_s value, the weaker the exchange stiffness, thus, the stronger the frustration.

$H_{eb} = M_s / \chi_\perp = H_{K F M} + (H_{eb} + \Delta H_c)$

where, $\Delta H_c = H_{c AFM/FM} - H_{c FM}$

$V_{cluster} = \mu / M_s = \mu H_{po}$

M-H Curves with Zero Remanence in Various FM Layers

Estimation of a Superparamagnetic Cluster Volume

Langevin Function $MM_0 = \coth(\mu H/k_BT) - 1/(\mu H/k_BT)$

$\nu_{cluster} = \mu / M_s$

Effect of Ferromagnetic Thickness on SQ and H_{eb}

There was strong dependence of M_s on magnetic alignment in the FM layer and H_{eb}.

Estimation of a Magnetic Dead Thickness t_{dead} and M_s

M-H curves with zero remanence, characteristic of superparamagnetism, were observed in various FM layers on IrMn.

Effect of M_s on the Effective Critical Thickness $t_{c_{eff}}$

The smaller the M_s value, the weaker the exchange stiffness, thus, the stronger the frustration.

$H_{eb} = M_s / \chi_\perp = H_{K F M} + (H_{eb} + \Delta H_c)$

where, $\Delta H_c = H_{c AFM/FM} - H_{c FM}$

$V_{cluster} = \mu / M_s = \mu H_{po}$

Experiment

Ferromagnetic and Antiferromagnetic Materials Used | M_s (emu/cm3) | T_c (°C) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCo</td>
<td>800</td>
<td>1910</td>
</tr>
<tr>
<td>NiFe</td>
<td>440</td>
<td>348</td>
</tr>
<tr>
<td>Ni</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>(Ni${80}$Fe${20}$)${77}$Cu${23}$</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>(Ni${80}$Fe${20}$)${71}$Cu${29}$</td>
<td>200</td>
<td>80</td>
</tr>
</tbody>
</table>

Introduction : In-plane Isotropic Reversible M-H Curves

$G/Ta(20)/Cu(20)/IrMn(0 or 10)/(NiFe)$_{71}$Cu$_{29}$(t nm), $M_s = 200$ emu/cm3

IrMn/(NiFe)$_{71}$Cu$_{29}$ films showed deteriorated ferromagnetic nature, compared to single (NiFe-Co)Cu/IrMn films.

The non-hysteretic M-H curves for single and (NiFe-Co)Cu/IrMn films were fit quite well to the formula using the Langevin function.

The value of M_s was found to be close to its bulk value for each FM material.