Effect of Disorder on Spin-Injection in Semiconductors from Ferromagnets

J. Velev and W. H. Butler

MINT Center - The University of Alabama

This project was funded by DARPA through ONR N00014-02-1-0590 and NSF-DMR 0213985.

Abstract

We investigate the problem of spin-injection from a ferromagnetic metal into a semiconductor. Near 100% polarization is predicted for an ideal Fe(100)-semiconductor interface since states of only one symmetry Δ_1 which exist only in the majority channel can propagate through the Schottky barrier. In the presence of interface disorder some of the minority blocked states are scattered into the Δ_1 state, reducing the polarization.

Conclusions

• In absence of disorder transmission is 100% spin-polarized due to symmetry of states at $k||=0$.
• Majority transmission which occurs via Δ_1 state is not affected by disorder.
• Minority transmission increases with disorder decreasing polarization of injected current.
• Effect (decrease in polarization) is greatest for disorder in the Fe, decreasing as disordered layer is moved towards the semiconductor.
• Disorder was modeled using a uniform distribution of on-site energies of width 0.05Ry (upper graphs) or using substitutional disorder (lower graphs).

Without disorder, k_\uparrow is conserved. Only up spin electrons can penetrate the Schottky barrier.

For more information and reprints contact:
J. Velev, MINT Center. E-mail: jvelev@mint.ua.edu