A Model for the Easy-Axis Alignment of Chemically Synthesized L$_{10}$ FePt Nanoparticles

J.W. Harrell, S. Kang, Z. Jia, D.E. Nikles1, R. Chantrell2, and A. Satoh3

MINT Center, Univ. of Alabama; 2The University of York, York, UK; 3Akita Prefectural University, Akita, Japan

This project was funded by grant NSF MRSEC - DMR 0213985.

Abstract

- **Easy-axis orientation** of chemically synthesized L$_{10}$ FePt nanoparticles obtained by drying a dispersion in a magnetic field has been calculated.
- Degree of orientation depends on $\mu H/kT$ and KV/kT. ($\mu =$ particle moment, $K =$ anisotropy constant, $V =$ particle volume).
- **Exact analytical solution** obtained for $KV/kT > \mu H/kT$.
- **Monte-Carlo model** used to calculate the orientation for arbitrary values of KV/kT and $\mu H/kT$.
- MC model gives good qualitative agreement with the measured field and angular dependence of orientation.
- Calculated orientation is higher than measured and is consistent with a reduced anisotropy constant due to particle aggregation during the drying process.

Theory

$$E = KV \sin^2 \phi - M_V H \cos \psi$$

Remanence $= m_o = \left\langle \cos \theta \right\rangle$

$$Z = \int_0^{2\pi} \int_0^\pi \left[\sin \phi \sin \psi \cos \left(-a \sin^2 \phi + b \cos \psi \right) \right] d\phi d\psi,$$

$$a = \frac{KV}{kT}, \quad b = \frac{\mu H}{kT}.$$

Strong coupling approximation (SCA), $KV/kT > \mu H/kT$:

$$\left\langle \cos \theta \right\rangle = 1 + \frac{1 - \cosh(b)}{b \sinh(b)},$$

Intermediate to strong coupling approximation (ISCA), valid for $KV/kT > 3$ and $m_o > 0.6$

$$\left\langle \cos \theta \right\rangle = \frac{e^{-a} - 1}{a I(a)},$$

$$I(a) = \int_1^\infty \frac{\exp(ax^2)}{x} dx,$$ $L(b) = \text{Langevin}$ fct

Summary

- The orientation process for L$_{10}$ FePt nanoparticles has been calculated.
- Results are in qualitative agreement with experiment, but predict higher orientation than obtained experimentally.
- Results suggest that small FePt nanoparticles can be highly oriented in modest fields.

Calculated remanence using Monte-Carlo model and strong (SC) and intermediate to strong (ISCA) approximations for KV/kT = 10.

Measured hysteresis loops of aligned directly synthesized L$_{10}$ FePt nanoparticles [1].