Synthesis of Pt and PtRu Nanoparticles for Anode Catalysts of Direct Methanol Fuel Cells (DMFCs)

Z. Liu1, M. Shamsuzzoha2, E.T. Ada2, G. B. Thompson3, W. M. Reichert1 and D. E. Nikles1 3

1 Chemistry Department, University of Alabama
2 Central Analytical Facility, University of Alabama
3 MINT Center, University of Alabama

This project is funded by DOE-EPSCoR and shares facilities with MRSEC

Motivation

- Pt and Pt-alloy nanoparticles can be used as anode catalysts for Direct Methanol Fuel Cells (DMFCs).
- Polyalcohol reducing synthetic approaches allow good control over the particle size and shape.
- To activate the nanoparticles, organic capping agents binding on particle surfaces need to be completely removed.
- Electrocatalytic activity of particles can be characterized by Cyclic Voltammetry (CV).

Synthetic procedures for Pt nanoparticles

\begin{verbatim}
Pt(acac)_2 (95 mg) + Hexadecanediol (390 mg) + Diphenyl ether (20 ml)
↓ Heat to 110 °C (N\textsubscript{2} atmosphere)
↓ Inject oleylamine (1.36 ml)
↓ Heat to 175 °C
↓ Keep T=175 °C for 45 min
↓ Stop heating and cool down to 50 °C
↓ Wash with ethanol and disperse in Hexane
↓ Isolate Particles by Centrifugation
\end{verbatim}

Synthetic procedures for PtRu nanoparticles

\begin{verbatim}
Pt(acac)_2 (80 mg) + RuCl\textsubscript{3} (44 mg) + Diphenyl ether (20 ml)
↓ Heat to 110 °C (N\textsubscript{2} atmosphere)
↓ Inject oleylamine (1.36 ml)
↓ Inject 4 ml 1.0 M super hydride
↓ Reflux for 1 hr
↓ Stop heating and cool down to 30 °C
↓ Wash with ethanol and disperse in Hexane
↓ Isolate Particles by Centrifugation
\end{verbatim}

Summary

- Pt and PtRu nanoparticles with narrow size distributions were synthesized by chemical reducing approaches.
- As-prepared Pt nanoparticles can be activated through annealing the particles in air at 185°C.
- PtRu nanoparticles can be transferred from organic solvents to water solution and are stabilized by electrostatic interaction.
- The activated Pt and PtRu nanoparticles show good catalytic activity for methanol oxidation.

For more information contact:
Z. Liu, MINT Center
E-mail: liu001@bama.ua.edu