Multiscale Modeling for Spintronics

Claudia K.A. Mewes, Tim Mewes, William H. Butler
Center for Materials for Information Technology (MINT)
Department of Physics and Astronomy
University of Alabama
Tuscaloosa, AL, U.S.A.

The next generation of spintronic devices relies strongly on the development of new materials with high spin polarization, optimized intrinsic damping and tunable magnetic anisotropy. Therefore technological progress in this area depends heavily on the successful search for new materials as well as on a deeper understanding of the fundamental mechanisms of the spin polarization, the damping and the magnetic anisotropy. My talk will focus on different aspects of materials with high spin polarization, low intrinsic relaxation rate and perpendicular anisotropy. Our results are based on first principles calculations in combination with a non-orthogonal tight-binding model to predict those material properties for complex materials which can be used for example in new spin based memory devices or logic devices.