Synthesis and Growth Mechanism of Ultrathin Iron Oxide Nanowhiskers

Yaolin Xu, Soubantika Palchoudhury, Zhongtao Zhang, C. Heath Turner*, and Yuping Bao*

Center for Materials for Information Technology (MINT)
Department of Chemical and Biological Engineering
University of Alabama
Tuscaloosa, AL, U.S.A.

Abstract:
Ultrathin one-dimensional nanostructures have attracted great interest due to their unique physical and chemical properties. Here, we report the synthesis of ultrathin iron oxide nanowhiskers (2 x 20 nm) through a ligand-directed self-assembly method. These ultrathin nanostructures were systematically characterized with a comprehensive set of tools, which includes: thermogravimetric analysis (TGA), transmission electron microscopy (TEM), electron diffraction pattern, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), alternating gradient magnetometer (AGM), and Fourier transform infrared spectroscopy (FTIR). Based on an understanding of ligand coordination environments of Fe(III) oleate precursor, we propose a ligand-directed growth mechanism for iron oxide nanowhisker formation. Complementarily, this proposed mechanism was supported by our density functional theory (DFT) simulation. The formation of the nanowhiskers provides a unique shape-control example of nanostructures based on a deep understanding of the precursor ligand chemistry, offering additional insights into nanoparticle synthesis. In particular, the effects of the ligand microenvironment present another synthetic strategy for nanoparticle shape control.

References:
