Colloidal Synthesis of Ferromagnetic CuCr₂S₄ Nanocrystals and Nanoclusters Karthik Ramasamy, Dipanjan Mazumdar, Yu-Hsiang A. Wang and Arunava Gupta*

Center for Materials for Information Technology (MINT)

The University of Alabama

Tuscaloosa, AL, U.S.A.

Nanocrystals and nanoclusters of room temperature ferromagnetic spinel $CuCr_2S_4$ have been synthesized by a facile solution-based method. The synthesis involves the injection of 1-dodecanthiol into a boiling coordinating solvent containing $CuCl_2$ and $CrCl_3.6H_2O$. Using octadecylamine (ODA) as a solvent yields cube shaped nanocrystals with an average size of 20 ± 2 nm, while with oleylamine (OA) flower-shaped nanoclusters with an average size of 31 ± 2.5 nm are obtained. Powder X-ray diffraction patterns confirm formation of the pure spinel phase without any impurities in both cases. Magnetic measurements yield saturation magnetization (M_s) values of 30 emu/g and 33 emu/g for the octadecylamine and oleylamine capped particles, respectively, at 5 K.

References:

- 1) Lotgering, F. K. Solid State Commun, 1964, 2, 55;
- 2) Ramirez, A. P.; Cava, R. J. Krajewski, J. Nature, 1997, 386, 156;
- 3) Muroi, M.; Street, R.; McCormick, P. G. Physical Review B, 2001, 63, 052412.